Resilience in social-ecological systems: identifying stable and unstable equilibria with agent-based models

Maarten J. van Strien, Sibyl H. Huber, John M. Anderies, Adrienne Grêt-Regamey

Mountain socio-ecological systems

Mountain socio-ecological systems

Level 2: shocks

Resilience of socio-ecological systems

All systems are characterised by "push" and "pull" factors:

Ecology/demography: Birth vs. death

Economy: Production vs. consumption

Agriculture/Forestry: Growth vs. harvest

Environment: Evaporation vs. precipitation

Equilibrium: push rate = pull rate

Assume the natural growth function is reacting to climate change (i.e. external system stressor)

Bifurcation diagram (meta-model of system)

Bifurcation diagram (meta-model of system)

Nature, 2009

Early-warning signals for critical transitions

Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.

Model: ALUAM-AB, which simulates land-use changes in mountain landscapes based on land-use decisions of individual farmers under a range of socio-economic, political and ecological constraints.

System state: area of intensive and extensive agriculture.

External system stressors: Prices for agricultural produce, subsidy policies, or climate (showing results for agricultural direct payments).

Simulations: 350 model runs with different initial land-use configurations and different values of direct payments for 10-year periods. Other input settings were randomised as much as possible.

Analysis of simulation output: Assess the rate and direction of change in intensive and extensive agriculture with linear regression.

Direction-field plots

Stability landscapes

Bifurcation diagrams making use of support-vector machine classification

Minimum amount of direct payments necessary for extensification to take place

In a system with 2500 ha of intensive agriculture, increasing the current direct payments with 50 % (1.0 = current level) will cause the area of intensive to shrink.

The intensive agriculture will always decrease in a system with < 1200 ha and direct payments > 0.4

