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ABSTRACT. Knowledge coproduction that draws on local and scientific knowledge presents opportunities for more holistic
understanding of environmental change. We describe our use of a multiple-evidence based approach to investigate the causes and
consequences of environmental change in a community-protected grassland and its surrounding landscape in the Ethiopian highlands.
We explore the interaction of biophysical change (precipitation and vegetation) and social change (political and management
institutions), and discuss potential impacts for ecosystem service provisioning. We quantified current distributions of locally defined
land use/cover classes using a supervised classification, with an overall accuracy of 87.1%. Local community members then described
and ranked the ecosystem services associated with each land class according to their perceived importance for society. Vegetation and
precipitation changes were assessed using satellite time series beginning in the early 1980s, while local narratives describe changes back
to the 1970s. The knowledge coproduction process brought together ethnographic and remote sensing approaches, revealing both
complementary and contradictory findings across knowledge systems. Results with high agreement across knowledge systems clarify
and reinforce understanding of certain threats and changes to the area, such as the rapidly declining native forests, the disappearing
belg rainy season (p = 0.01), and the impact of insecure land tenure on natural resource extraction. Compelling areas of disagreement
point to topics in need of further investigation, including increased attention to the spatial and temporal variability of change across
a seemingly homogeneous cultural landscape, and the process of shrub encroachment into the protected grassland.
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INTRODUCTION
Responding to changes in the structure and functioning of
landscapes is a central challenge for the management of
sustainable ecosystems, with far-reaching consequences for
human well-being and local adaptation to global environmental
change (Lambin et al. 2001, Carpenter et al. 2009, Rockström et
al. 2009, DeFries et al. 2012). Biological invasions (Vitousek et
al. 1996), phenological shifts (Buitenwerf et al. 2015), and
unsustainable natural resource use (Persha et al. 2011) are among
the most pressing drivers of change impacting ecosystems around
the world. Understanding these changes within integrated social-
ecological systems is critical for developing effective responses, as
drivers, impacts, and feedbacks among social and biophysical
processes can lead to unexpected outcomes (Ostrom 2007, Turner
et al. 2007, Lambin and Meyfroidt 2010).  

As global environmental change continues to accelerate and
intensify (Cleland et al. 2007, Steffen et al. 2011, Pepin et al. 2015),
new approaches are required to build bottom-up understanding
and place-based responses that connect across multiple
knowledge systems and evidence streams (Tengö et al. 2014).
Drawing on multiple knowledge systems, e.g., local or indigenous
knowledge, different academic disciplines or work sectors, is
increasingly necessary for improved understanding and
management of adaptive social-ecological systems (McLain and
Lee 1996, Dietz et al. 2003, Folke 2004). For example, Armitage
et al. (2011) demonstrate that the combination of insights from

biological science and place-based local knowledge of an Arctic
fish species led to a revised understanding of the causes of fish
declines and more precise management options for addressing
them. The multiple benefits of these cross-knowledge
collaborative approaches have been observed in other social-
ecological contexts, including whale conservation (Huntington
2000, Fernandez-Gimenez et al. 2006); forest change (Chalmers
and Fabricius 2007); sea ice change (Nichols et al. 2004, Laidler
2006); rangeland management (Fernández-Giménez 2000, Reed
et al. 2013, Klein et al. 2014, Jamsranjav et al. 2019); and fish and
wildlife monitoring (Moller et al. 2004, Prado et al. 2013).  

One key challenge when bringing multiple knowledge systems
together is the critical need to address power dynamics.
Knowledge integration has traditionally relied on scientific
validation of other forms of knowledge (Agrawal 1995, Turnbull
2000), with the result that local knowledge has been overly
simplified or ignored, and local communities divorced from their
own knowledge and subsequent self-efficacy (Nadasdy 1999,
Latulippe 2015). Knowledge coproduction differs from
knowledge integration in material and philosophical ways. It is
typically an iterative, ongoing collaborative process that respects
and acknowledges socio-cultural contexts, resulting in a more
inclusive and equitable process for generating holistic
understanding about an issue (Berkes et al. 2003, Jasanoff 2004,
Armitage et al. 2011, Shirk et al. 2012). A multiple evidence-based
(MEB) approach (Tengö et al. 2014) is gaining attention as a
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particularly effective framework for knowledge coproduction
because it emphasizes the importance of maintaining the internal
validity of knowledge systems so that final products are salient,
credible, and legitimate to the diverse stakeholders involved (Cash
et al. 2003, Reid et al. 2006).  

Community-based conservation areas present particularly
valuable case studies for knowledge coproduction because there
are often a mix of formal and informal institutions that support
working across multiple groups of people and their respective
knowledge systems (Dudley 2008, Ruiz-Mallen and Corbera
2013). When considered as a multilevel commons problem,
community-based conservation areas can be simultaneously a
local commons that produces ecosystem services for local
consumption and well-being, and a regional commons that
supports cross-scale activities like ecotourism and economic
development (Berkes 2007). As such, the land tenure and
management institutions that control access to these areas are
often necessarily complex and highly influential on conservation
outcomes (Dietz et al. 2003, Persha et al. 2011). Examining
landscape-scale environmental change over time in community-
based conservation areas can enable clearer understanding of the
interactions and feedbacks between biophysical and social drivers
of change in these systems, and guide the development of
actionable responses that are targeted to the particular strengths
and vulnerabilities of that place.  

Remote sensing approaches offer tools for examining the causes
and consequences of environmental change at a landscape scale,
and recent advances have made these tools more accessible and
more appropriate for addressing different kinds of problems.
Historically, the high cost of satellite imagery and lengthy
processing time limited applications to using two or three images
to assess change over some period of time (Coppin et al. 2002,
Kennedy et al. 2014). With the full and growing global archive of
NASA/USGS Landsat imagery being made freely available in
2008 (Woodcock et al. 2008), alongside the development of open-
source algorithms for multidate image compositing, automated
cloud-masking (Zhu and Woodcock 2012), and surface reflection
correction (Masek et al. 2006), the spectral and spatial continuity
between successive Landsat program satellites now more closely
approximates a continuous representation of change (Wulder et
al. 2019). These advancements enable a more direct engagement
between remote sensing products and ethnographic narratives of
change because the availability of cloud-free images no longer
constrains the temporal and spatial bounds of the study.  

An MEB approach, whereby people with local knowledge and
knowledge derived from remote sensing are equal partners in an
iterative process of knowledge coproduction, can lead to more
consistent and high-quality results for both academic and
nonacademic participants (Robbins and Maddock 2000, Naidoo
and Hill 2006, Isager and Broge 2007, Herrmann et al. 2014).
Local knowledge is increasingly viewed as necessary for remote
sensing projects, particularly when validating and interpreting
results (e.g., Smith et al. 2019), and is valued for its engagement
at extremely fine spatial and temporal scales (Berkes 2007) and
ability to address high levels of complexity and multiple variables
(Berkes and Berkes 2009). Thus, the spatial breadth of remote
sensing coupled with the depth of local knowledge can support
detailed system understanding at a landscape scale, and the MEB

process can produce culturally appropriate and actionable results
for sustainable ecosystem management and adaptation to
environmental change (Isager and Broge 2007).  

In this study, we use an MEB approach to investigate the causes
and consequences of environmental change over five political and
management periods, with the aim of producing a more holistic
understanding of change in a community-protected grassland
and its surrounding landscape in the Ethiopian highlands. We
draw on multiple knowledge systems to describe the interaction
of biophysical change (precipitation and vegetation) and social
change (political and management institutions), and explore
potential impacts for ecosystem service provisioning. The
ecosystem services concept was developed to clarify how
ecosystem structures and functions work to benefit human
societies (Ehrlich and Erlich 1981), and thus ecosystem services
are often described as “the benefits people obtain from
ecosystems” (MEA 2005:49) or conversely as “nature’s benefits
to people” (Díaz et al. 2015). Work on ecosystem services
valuation and integration into policy is often criticized for a lack
of attention to local needs, values, and knowledge (Turnhout et
al. 2012, Pandeya et al. 2016). Our work, which uses the terms
“ecosystem services” and “benefits” interchangeably, presents a
highly local case study of integrating diverse knowledge types to
better understand and manage ecosystem services.  

We formalized results as maps and narratives that were edited and
validated by community members, conservation managers, and
local policy makers, resulting in tangible “boundary objects” for
management (Star and Griesemer 1989, Steger et al. 2018).
Boundary objects emerge from collaborative processes and
address a societal information need, and are characterized by their
interpretive flexibility and ability to apply to both specific and
general contexts (Star 2010). The boundary objects produced
through this research effectively combined observations and
products across multiple knowledge systems to lay a foundation
for future knowledge coproduction and application in this area.

METHODS

Study site
The Guassa Community Conservation Area (Guassa) is located
in the Menz Gera woreda (similar to a county or district) of the
Amhara Region of Ethiopia (Fig. 1). Ranging from 2600 to 3560
m.a.s.l., this area is historically characterized by two rainy seasons
known as the “belg” (~1 Feb–30 April) and “kiremt” (~1 July–30
September). However, recent research from 2007–2012 indicates
that rainfall patterns may be shifting, with more than half  of the
average annual 1650 mm (± 243 mm SD) of rainfall occurring in
a unimodal peak in July and August (Fashing et al. 2014). During
that same period, the average monthly temperature at Guassa was
11.0 ºC (± 1.2 SD; Fashing et al. 2014). Guassa supports several
endemic and threatened species, including the critically
endangered Ethiopian wolf (Canis simensis) and charismatic
gelada monkey (Theropithecus gelada; Ashenafi et al. 2005).  

Guassa is named after the guassa grasses (Festuca spp.) that are
valuable to the local communities for their use as thatch, rope,
construction material, and forage. Guassa is 78 km², and the nine
communities (kebeles, the smallest administrative unit in
Ethiopia) that manage and use the area occupy another 370 km²
(Fig. 1). These nine kebeles are the only communities in the region
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Fig. 1. The identifying numbers, names, population, and administrative boundaries of the nine kebeles
(communities; in black) with ancestral rights to Guassa. These kebeles are all part of the Menz Gera
woreda (county or district), and their numbered identifiers are used interchangeably with their local
names (note: kebele 20, “Yedi”, is located in two separate areas). Guassa has no human population and is
administered separately as a community conservation area.

with ancestral and modern rights to Guassa, and therefore we
focused our fieldwork in these areas. There are approximately
42,000 people living in these nine kebeles (CSA 2017), nearly all
of whom belong to the Amhara ethnic group and the Ethiopian
Orthodox Church. Increasing food insecurity in the area has
resulted in roughly half  the population relying on food aid
programs (MGWA 2016).  

Guassa has undergone significant political and land management
changes throughout its history, beginning with the overthrow of
the Imperial regime of Emperor Haile Selassie (pre-1974),
through a period of land reform during the military regime known
as the Derg (1974–1991), a transitional period of mixed
government and community management (1991–2003), followed
by increased NGO leadership (2003–2012), and finally the current
comanagement regime (2012–present; Fig. 2). These five political-
management periods were identified as key drivers of
environmental change in the area during preliminary fieldwork
and literature reviews (Admassie 2000, Ashenafi and Leader-
Williams 2005) and we use them to structure our subsequent
analysis.  

The community conservation area was managed for hundreds of
years (c. 1600–1974) according to the locally unique and highly
effective Qero system of communal management that restricted
access to the grasses through two to three month open seasons
every three to five years (Ashenafi and Leader-Williams 2005).
That system was undermined when the socialist military Derg
regime took over, and the 1975 agrarian reform transferred land

ownership to the state, propagating decades of confusion over
responsibility for Guassa’s management (Admassie 2000,
Ashenafi and Leader-Williams 2005). Throughout the 17-year
Derg regime, the Qero system was slowly eroded in favor of de
facto open access use rights, which continued into the current
political regime despite community efforts to re-establish their
exclusive rights (Fischer et al. 2014).  

As a source of water and a refuge for wildlife, the Guassa area
has been attracting increasing attention from tourists, the
Ethiopian government, researchers, and international conservation
organizations since about 2000 (Welch 2017). Initially, NGOs
were met with skepticism from the local kebeles, but this subsided
with the development of an eco-tourism project that returned
profits directly to the communities. Eventually a new
comanagement regime was established that restored daily
management responsibilities to nine kebeles with ancestral rights
to Guassa. International research interests in the area expanded
to include long-term studies on the Guassa population of endemic
gelada monkeys in 2006 (Fashing et al. 2014), and Ethiopian and
international researchers arrive to study new aspects of the system
each year. Exclusive use rights to the area were formally restored
to the kebeles by Amhara Regional Regulation No. 97 in 2012.
Currently the management team comprises five representatives
from each of the nine kebeles (the “Guassa Committee”), of
which 10 form an executive committee (the “Tourism Board”),
and about 20 other individuals spread across two government
offices, one administrative office at the local county (woreda)
level, and the Guassa Conservation Office that is sponsored by
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Fig. 2. A timeline of political and management change in Guassa.

the Amhara Regional State. They manage the area collaboratively,
with final decision-making power in the hands of the Guassa
Committee, which meets monthly on their own and quarterly with
the government offices.

Data collection and analysis

Ethnographic data
We used semistructured group interviews to identify the locally
defined land classes, their associated ecosystem services, and
overarching perceptions of environmental change in this area over
time. Semistructured interviews are a conversational interview
form that allows participants to influence the breadth and depth
of topics covered (Longhurst 2003). We elected to conduct group
interviews because they facilitated a rich, dynamic conversation
among diverse members of a community (Gibbs 2012). Previous
research has also shown that people in the Ethiopian highlands
tend to state collective perceptions rather than personal
experiences (Nyssen et al. 2006), which strengthened our ability
to make generalizations from the relatively small number of
participants. We convened a series of group interviews in March
2017, one in each of the nine kebeles, and invited an equal number
of men and women with knowledge of the conservation area to
attend. We reached out to kebele administrators and asked them
to identify a diverse group of people with good understanding of
the Guassa area and interest in participating in a four to six hour
workshop. Ten men and 10 women attended the first interview,
and we determined that was too many for a productive
conversation. We limited the remaining interviews to 10 to 12
people for a total of 106 participants across nine kebeles, with
equal gender representation. The average age of participants was
42 years old, ranging from 18 to 88 years.  

In each group interview, we requested that participants discuss
and describe the categories they use to think about and organize
their land, both in the kebele lands and in the Guassa area. After
establishing this list of land classes, we then asked how those land
classes have been changing over the five political-management
periods of Guassa. For each land class, we requested that the
group free list all the ecosystem services (translated as “benefits”)
they receive from that land class, and a research assistant wrote
them on a chalkboard. We then collectively grouped the ecosystem

services into a smaller set of distinct services, e.g., “making tools”
and “making bowls” were determined to be essentially the same
service of “household items.” As a group, participants ranked the
services in each land class to identify which were most important
to their community. This entailed group discussions and voting
to achieve consensus, which took no longer than two hours.
Throughout the discussions, we facilitated participation to
prevent certain individuals or groups from dominating the
conversation. Finally, participants were supplied with markers,
blank paper, and high-resolution Google Earth images of their
kebele and asked to identify the general distribution of these land
classes following a standard “participatory mapping” protocol
(Klain and Chan 2012, Luizza et al. 2016, Wakie et al. 2016). An
example of the kebele-level maps produced is given in Appendix
1 (Fig. A1.1). This research was reviewed and approved by
Colorado State University’s Institutional Review Board
(361-18H), and was conducted with free, prior, and informed
consent of all participants. All participants were offered modest
financial compensation for their time.  

We used the software package ANTHROPAC (Borgatti 1996) to
analyze the ecosystem service data and calculate the relative
importance of each service across the nine kebeles based on their
ranked positions. The software calculates Smith’s salience value
(S) from zero to one for each item in a list, considering both the
frequency of the item across lists and its position within each of
those lists (Borgatti 1996, Levine et al. 2017). Salience values
closer to one indicate good agreement across the nine kebeles
regarding the importance of a particular ecosystem service.

Remote sensing and precipitation data
Following the group interviews, we conducted a supervised
classification of Landsat 8 optical imagery using a random forest
classifier implemented in the randomForest package in R
(Breiman 2001, R Core Development Team 2019). Random forest
is a machine learning technique that uses bagging, i.e., random
resampling with replacement, to average across large numbers of
decision trees and thus produces more accurate classifications
than single trees alone (Breiman 2001, Rodriguez-Galiano et al.
2012). A random forest classifier provides flexibility by allowing
for nonlinear relationships between predictor and response
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Table 1. Description of 27 predictor variables used in the supervised classification.
 
Variable Description

aspect downslope direction
elevation meters above sea level
slope degree of tilt
Band 1 Landsat 8 OLI coastal aerosol band
Band 2 Landsat 8 OLI blue band
Band 3 Landsat 8 OLI green band
Band 4 Landsat 8 OLI red band
Band 5 Landsat 8 OLI near infrared band
Band 6 Landsat 8 OLI short-wave infrared band 1
Band 7 Landsat 8 OLI short-wave infrared band 2
wetness weighted linear combination of Landsat 8 OLI bands to produce a measure of soil or surface moisture
greenness weighted linear combination of Landsat 8 OLI bands to produce a measure of photosynthetically active

vegetation
brightness weighted linear combination of Landsat 8 OLI bands to produce an albedo-like measure of surface

reflectance
CoMgmt_DOY253 Spline interpolated NBR values during the Comanagement period for the wet season (10 September)
CoMgmt_DOY40 Spline interpolated NBR values during the Comanagement period for the dry season (9 February)
CoMgmt_NGO_DOY253 Difference of spline interpolated NBR values between the Comanagement and NGO periods for the wet

season (10 September)
CoMgmt_NGO_DOY40 Difference of spline interpolated NBR values between the Comanagement and NGO periods for the dry

season (9 February)
NGO_DOY253 Spline interpolated NBR values during the NGO period for the wet season (10 September)
NGO_DOY40 Spline interpolated NBR values during the NGO period for the dry season (9 February)
NGO_Trans_DOY253 Difference of spline interpolated NBR values between the NGO and Transitional periods for the wet season

(10 September)
NGO_Trans_DOY40 Difference of spline interpolated NBR values between the NGO and Transitional periods for the dry season

(9 February)
Transition_DOY253 Spline interpolated NBR values during the Transitional period for the wet season (10 September)
Transition_DOY40 Spline interpolated NBR values during the Transitional period for the dry season (9 February)
Trans_Derg_DOY253 Difference of spline interpolated NBR values between the Transitional and Derg periods for the wet season

(10 September)
Trans_Derg_DOY40 Difference of spline interpolated NBR values between the Transitional and Derg periods for the dry season

(9 February)
Derg_DOY253 Spline interpolated NBR values during the Derg period for the wet season (10 September)
Derg_DOY40 Spline interpolated NBR values during the Derg period for the dry season (9 February)

variables and is robust to missing predictor data and (multi)
collinearity (De'ath and Fabricius 2000). Random forest
classifiers have been used in Ethiopia for a variety of objectives,
including the identification of wetlands (Dubeau et al. 2017),
mapping irrigated agriculture (Vogels et al. 2019), and predicting
soil functional properties (Vågen et al. 2013).  

We used the land classes defined by participants in the interviews
to conduct this supervised classification. We selected a cloud-free
image taken on 10 December 2016 because it aligned most closely
with the dates of the workshops and the most current high-
resolution imagery available in Google Earth Pro. We collected
184 ground truth points immediately following the group
interviews under the direction of participants, and used these
ground truth points and the results of the group interview
mapping exercises to guide the collection of 3060 additional data
points from Google Earth (where high-resolution imagery was
available for December 2016 across the study area). A total of 27
environmental variables (Table 1) were used to predict the land
classes: the seven bands from Landsat 8 comprising surface
reflectance in the visible, near infrared, and shortwave infrared
spectral regions, three tasseled cap composites (Kauth and
Thomas 1976) of those bands (brightness, greenness, wetness),
fourteen metric images from remote-sensing based phenological
models (described below), as well as elevation, aspect, and slope

variables derived from a 30m ASTER Global Digital Elevation
Model (NASA/METI/AIST/Japan Spacesystems and U.S./Japan
ASTER Science Team 2009). See Appendix 1 for a map of training
points (Fig. A1.2). Because there are no available aerial
photographs or ground truth datasets for this area, we were not
able to conduct a supervised classification for past time periods.  

We used spline interpolation to explore general changes in
phenology and vegetation productivity in the area using all
available Landsat data from 1985 to the present (n = 597 image
dates). We performed standard cloud-masking on each image
(Zhu and Woodcock 2012), and extracted Normalized Burn Ratio
(NBR) values (Key and Benson 2006). NBR is similar to other
vegetation indices like the more commonly employed Normalized
Difference Vegetation Index (NDVI; Tucker 1979), except that it
is calculated using the near-infrared and shortwave-infrared
wavelengths, making it more resistant to atmospheric
contamination. Although NBR has traditionally been used to
detect the magnitude and direction of vegetation change pre- and
postfire events (Key and Benson 2006), we found its resistance to
atmospheric contamination and sensitivity to changes in both
vegetation structure and moisture content to be useful in our
cloudy study area.  

The image stack was divided temporally into four date ranges
corresponding to the duration of each political-management
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period for which satellite data were available. This resulted in 70
images in the Derg period (44 with < 50% cloud cover), 148 images
in the Transition period (87 with < 50% cloud cover), 147 images
in the NGO period (86 with < 50% cloud cover), and 232 in the
Comanagement period (135 with < 50% cloud cover). The total
number of cloud-free images for each pixel ranges from 31 to 454
with a mean of 322 images. A map is provided in Appendix 1 to
illustrate that the Guassa area and kebeles immediately adjacent
(Ferkuta, Yedi, and Dergagne) suffer from the highest cloud cover,
yet still have 200–300 cloud-free images on average (Fig. A1.3).  

To assess vegetation changes over these political-management
periods, we used spline interpolation to model NBR values and
estimate phenological curves at each pixel within each political-
management period (Fig. A1.4). Spline interpolation allows for
estimation of vegetation index values at every day of year (DOY)
regardless of the timing of image acquisition (Clinton et al. 2010).
This allowed us to select the best dates for comparison with local
knowledge of the area rather than remaining restricted to the
availability of particular satellite images. We derived maps of
NBR values for wet (DOY 253, 10 September) and dry (DOY 40,
9 February) seasons for each period. We then subtracted maps of
the earlier time period from the later time period to assess the
magnitude and extent of changes in NBR, which we interpret as
a measure of vegetation productivity. NBR can take values
ranging from -1 to 1, though values between -0.5 and 0.5 are more
common in Guassa. Therefore, using a conservative approach
based on a histogram analysis, we considered a significant decline
in vegetation to be values < -0.2, and a significant increase in
vegetation to be > 0.2. Anything between -0.05 and 0.05 was
considered to be negligible change. These outputs were analyzed
individually as a measure of vegetation change, and served as
inputs to the supervised classification described above.  

We employed another time series dataset to explore changes in
precipitation for the study area over the same time period, which
we then compared to the changes in vegetation and narratives of
change from group interviews. We used the Climate Hazards
group Infrared Precipitation with Stations data (CHIRPS; Funk
et al. 2015), processed through the Climate Engine Application
(http://climateengine.org/), to look at past precipitation patterns
over the study area, stretching from 1981 to 2018 (Fig. A1.5).
CHIRPS data integrates 0.05° resolution satellite imagery with
available in-situ station data on precipitation to produce a gridded
time series product that estimates precipitation every five days.
We conducted a nonparametric Mann-Kendall test on the total
annual precipitation in the belg and kiremt rainy seasons to assess
trends in precipitation patterns over the past 37 years. We then
used another nonparametric test (Kruskall-Wallis) to determine
whether significant differences in precipitation occurred across
the historical periods of interest, again with attention to the short
belg and long kiremt rainy seasons. Statistical tests were
conducted in R (R Core Team 2019). For all of these statistical
tests, we considered p ≤ 0.05 to be statistically significant.

Cointerpretation of results
In August 2018, 41 participants (12 women and 29 men) were
invited to attend a workshop in the town of Mehal Meda.
Participants were invited from the Guassa Committee and the
Tourism Board (n = 27, three from each community), the Guassa
Conservation office (n = 3), scientists and NGO workers (n = 6),

and the local woreda administration office (n = 5). The workshop
sought to bring together results from the ethnographic and remote
sensing analyses, and to request feedback to help scientists
validate and interpret the results. A second workshop was held in
February 2019 to refine the results and analysis further, with
mostly the same participants (n = 38). For example, we requested
feedback on the accuracy of the supervised classification maps
and vegetation change analyses, and whether they had ideas about
the causes of the changes observed. We sought to ensure the
remote sensing products were useful to local participants, so we
incorporated suggestions like changing the colors used to
represent different land classes and editing the location and extent
of administrative boundaries.

RESULTS

Locally defined land classes and their spatial distributions
Across the nine kebeles, participants identified 10 land classes
with local relevance. Using 27 environmental predictors (Table 1)
and 3244 training points, we conducted a supervised classification
of these locally defined land classes (Fig. 3). We fit 5000 trees with
a random forest classifier, using cross-validation to assess model
performance. The classifier had an overall accuracy of 87.1% and
a kappa value of 0.85, indicating a high quality performance.
Across all land classes, the variables with the strongest influence
on predictions, i.e., the largest mean decrease in accuracy, were
elevation, wet season NBR values from the Comanagement
period, dry season NBR values from the Derg period, and tasseled
cap greenness. Yet, more nuanced patterns emerge at the level of
individual land classes, where more densely vegetated classes
(forest and shrublands) were better predicted by dry season NBR
in the Derg and Comanagement periods, while less densely
vegetated classes (stone and grazing lands) were better predicted
by wet season NBR values in the Comanagement and Transitional
periods. We present additional results in Appendix 1, including
the confusion matrix (Table A1.1), a table of square kilometers
per land class and percent area (Table A1.2), and a table of the
relative importance of each predictor variable per land class
(Table A1.3). Below, we present the land classes and their relative
distributions in decreasing order of land area.  

Farmland: The main crops of this region are barley, wheat, and
beans. Different crop cultivars are planted depending on the
season. Weeding and harvesting are often done through
communal “Debo” groups, though farmland is privately owned.
Farmland is the largest land class in the study area, occupying
161 km² (36.1%) of the total land area, and between 29% and 59%
of each kebele’s land area. Averaging user’s and producer’s
accuracies (Alonzo et al. 2014) revealed that farmland had a
classification error of 15.1%. Tasseled cap greenness and dry
season NBR values during the Comanagement period were the
best predictors of this land class.  

Shrublands: Shrublands are composed of mainly short, dense
species like asta (Erica arborea), amijah (Hypericum revolutum),
and cheranfi (Euryops pinifolius), all of which are economically
valuable species, though people are no longer allowed to harvest
them inside Guassa because of potential impacts to wildlife.
Shrubland occupies 69 km² (15.5%) of the total land area, and is
found mostly in Guassa (21.8 km²), though there are some
concentrated areas primarily in Gragne, Kewula, and Yedi
kebeles. Shrubland had the second largest error in classification
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Fig. 3. Classification of the study area using locally defined land classes.

(17%), primarily because of its spectral similarity with native
forest. Band 4, slope, and dry season NBR during the Derg period
were the best predictors of this land class.  

Stone: This land class was described as a mix of exposed, rocky
outcrops and the presence of large amounts of stone in the soil,
to the point that it prevents using the land as farmland. Although
stone occupies a large amount of total land area (69 km², 15.5%),
it is largely concentrated inside the kebele lands (mostly in Gragne,
Kewula, and Chare kebeles) and is quite limited inside Guassa
(3.2 km²). Stone had the largest errors in classification (18.6%)
and was often misclassified as farmland or bare land. Wet season
NBR values from the Comanagement period and tasseled cap
greenness were the best predictors of this land class.  

Protected grasslands: Most of the land classes were used exactly
as described by participants. However, when asking about the
land classes within the Guassa area, people started listing
individual species names rather than broader types of vegetation
cover. There was then a consolidation process that resulted in the
“protected grassland” class, which is made up of multiple grass
and forb species. This is the only land class that contains the guassa
grasses. Because of persistent confusion over the Guassa border,
some of the protected grasslands fall into the administrative areas
of the kebeles. The protected grasslands occupy 45.5 km² (58.2%)
of Guassa, with scattered patches in the adjacent kebele lands.
Protected grasslands had a low classification error (8.7%).
Elevation and tasseled cap greenness were the best predictors of
this land class.  

Grazing lands: Grazing lands are communal lands, but are
managed differently than the Guassa area because they do not
have the same restrictions on access. One man explained that “if

one man owns 50 sheep and another man owns one, the grazing
area is still shared. But if  he is enterprising enough, the man with
one sheep can cut the grass and sell it to the rich man.” Grazing
lands are dominated by gaya grass (Andropogon abyssinicus).
Grazing land occupies 39.7 km² (8.9%) of the total land area, and
between 6.1% and 15.3% of each kebele’s land area. Grazing lands
had a classification error of 13.6%, and were most frequently
confused with bare land. Band 6, Band 5, and wet season NBR
values from the Comanagement and Transitional periods were
the best predictors of this land class.  

Bare lands: Bare lands are characterized by the absence of
vegetation on land that should be able to support vegetation; it
was also described as “old” or “tired” land that has potential to
recover. Bare land occupies 33 km² (7.4%) of the total area, most
of which is found in Gragne, Kewula, and Tesfomentier kebeles.
Bare lands had a classification error of 15.8%. Band 4, Band 3,
and Band 2 were the best predictors of this land class.  

Native forest: Besides plantation forests, native forests are the only
other type of forest in this area. However, it was difficult for
participants to explain the difference between native forest and
shrublands; many of the same species occur in both land classes,
but native forest contains larger plants with different use values.
Some of the larger species that occur in both land classes are kosso
(Hagenia abyssinica), bisana (Croton macrostachyus), and juniper
(Juniperus procera). Native forest occupies 15.9 km² (3.6%) of the
total land area, and is concentrated in Kewula, Kuledeha, Yedi,
and Dargegne kebeles. There was no detectable amount of native
forest in Chare kebele. Native forest had a classification error of
14.7%. Dry season NBR values from the Derg period and Band
4 were the best predictors of this land class.  
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Plantation forest: Plantation forests range in size depending on
whether they were established as public erosion control projects or
as private woodlots. There are two dominant plantation species in
the area, eucalyptus (Eucalyptus globulus) and cypress (Cupressus
lusitanica). Plantation forest occupies only 9.1 km² (2%) of the total
land area, which is distributed relatively evenly throughout the
kebeles with a larger concentration in Guassa. Plantation forest
had a low classification error (3.6%). Dry season NBR values from
the Comanagement and Derg periods and the difference in dry
season NBR values between the NGO and Transitional periods
were the best predictors of this land class.  

Water: Open water was only present in one location in the study
area, a small reservoir between Gedenbo and Chare kebeles. The
two training points we used for this reservoir were both correctly
classified. Streams were too small to be captured by this
classification. Band 3, band 4, and dry season NBR values from
the Comanagement period were the best predictors of this land
class.  

Constructed areas: Constructed areas are the areas where humans
live and construct their houses and other buildings. Constructed
areas had such an initially high class error that we removed it from
the model and digitized the four cities, 50 churches, 22 schools, and
approximately 380 villages by hand. The difficulty of accurately
predicting constructed areas was partially due to the small size of
individual homesteads, the brightness of tin roofs, and the presence
of forest patches close to most residences, all of which led to
confusion among constructed areas, farmland, plantation forest,
stone, and bare land classes. Constructed areas and water reservoirs
together comprise less than 1% of the landscape.

Ranked preferences for ecosystem services by land class
Participants ranked the importance of ecosystem services in each
class except for bare land, which they perceived as having no
ecosystem services, and constructed areas, which have so many
benefits that it was perceived to be unrealistic to name them all.
Participants in the first group interview chose to list benefits of
Guassa (“Guassa Area” in Fig. 4) separately from those of the
protected grasslands, and so we asked participants in subsequent
interviews to continue with this distinction. For example, Guassa
is a source for guassa grasses (“harvest guassa grass,” Fig. 4), which
then have their own set of associated ecosystem services (e.g., “roof
thatch”). Salience values are used to rank ecosystem services across
kebeles; values closer to one indicate good agreement across the
nine kebeles regarding the importance of a particular ecosystem
service.  

Of these nine classes, seven had perfect agreement across the kebeles
regarding the most important ecosystem service for that class. These
were crops (farmland), forage (grazing land), roof thatch (guassa
grass), guassa grass provisioning (Guassa area), firewood
(shrubland), house construction (stone), and house construction
(plantation forest). There was nearly unanimous agreement that
drinking water is the most important service from the water class.
Native forest services were not as uniformly valued, with the top
four ecosystem services sharing similar salience values: income,
household items, firewood, and house construction. This was also
the only land class with income as the most important benefit,
perhaps reflecting the subsistence orientation of people in this
region. Indeed, the majority of ecosystem services described by
participants would be considered “provisioning services,” or

products obtained directly from ecosystems, indicating the
importance of these materials for the livelihoods of the
participants.

Fig. 4. Locally defined land classes and their respective
ecosystem services, ranked and aggregated across the nine
kebeles. Colored squares indicate overlap of services with other
land classes.

Although there are several shared ecosystem services across the
grazing land and protected grassland classes, clear distinctions
arise under the particular socio-cultural and ecological context of
this area. One difference is due to the types of grass found in these
grasslands. Grazing lands produce grasses that are valued mainly
as forage, while guassa grasses are considered valuable primarily
for nonforage uses. Grazing is only allowed in the grazing areas
because it has been banned inside Guassa since 2010. Even before
the ban, it was only allowed every three to five years or under
conditions of severe drought (Ashenafi and Leader-Williams
2005). The strength and height of the guassa grass makes it
particularly desirable for rope making and other local materials
such as ponchos, which are not valuable uses for the gaya grasses
found in the grazing lands. Five shared services exist across these
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classes: brick and wall plaster construction materials, fodder,
income, roof thatch, and floor covering. However, differences in
the relative ranks of these shared ecosystem services further
demonstrate the value of guassa grasses compared to other grass
species. Roof thatch is unanimously considered the single most
valuable service provided by the guassa grasses, and it is only the
fourth most important for gaya grasses. Similarly, gaya grasses
will be used for brick and wall plaster construction only when
guassa grasses are unavailable. The relative position of income in
these classes is illuminating because it indicates that people may
tend to sell gaya grasses (S = 0.27) before using them for
construction materials (S = 0.04). Likewise, people may tend to
sell guassa grasses (S = 0.44) before using them for fodder (S =
0.22). These differences in ecosystem services demonstrate a
complementary relationship between the different types of
grasslands in the area.  

There are noteworthy similarities and differences in the ecosystem
services received from shrubland, native forest, and plantation
forest classes that illustrate how these classes interact to support
local livelihoods. All three classes provide six shared ecosystem
services: firewood, household items, house construction
materials, forage, soil protection, and shelter for wild animals.
However, the relative importance of these benefits varies among
the land classes. For example, the most important benefit received
from plantation forest is timber for house construction, while this
is the ninth most important benefit from shrublands. The second
most highly valued benefit of shrublands is the shelter they
provide for wild animals, while this is valued much less in native
and plantation forests. The second most highly valued benefit
from native forest is household items, while this is valued fifth for
both plantation forest and shrublands. Despite having similar
species compositions, there are no further similarities in services
between shrublands and native forest. However, there are two
additional shared services between shrublands and plantation
forest and three additional shared services between plantation
forest and native forest. Shrublands and plantation forest are both
valued for bee-keeping (honey production) and for their beauty,
whereas plantation forest and native forest are both valued for
the income opportunities they bring and for their role in climate
regulation and the perceived ability to attract rain. Shrublands
have one unique service apart from native or plantation forest
(broom construction). Plantation forest has four unique
ecosystem services: fence construction, shade, charcoal
production, and the ability to increase groundwater (though this
last is restricted to cypress and not eucalyptus). Native forest has
three unique ecosystem services: traditional medicine, local fruits,
and the ability to improve soil fertility.

Local narratives of change
We constructed timelines of change for each of these land classes
by looking for consistent patterns and narratives across the group
interviews. When explanations diverged, we sought additional
explanations and clarity during the cointerpretation workshops.
We present the classes in order of decreasing consensus, first
highlighting classes where participants reported similar
perceptions of change.  

Bare lands: All participants agreed that bare land has been
increasing in the kebele lands since the Derg period because of
declines in soil fertility and precipitation, combined with intensive

grazing and increased soil erosion. However, bare land has been
decreasing inside Guassa since the NGO period because of
improved management activities and decreased human activity.  

Constructed areas: All participants agreed that human-
constructed areas have been increasing since the Derg period
because of an increasing local population (from births, not
immigration). In addition to new villages and individual
farmsteads, small cities are emerging in three communities nearest
to Guassa as good farmland becomes increasingly scarce and as
people in the area desire better access to urban resources and
lifestyles.  

Grazing lands: All participants agreed that grazing land area has
been decreasing since the Derg period because of conversion to
farmland. During the Imperial period, the lands immediately west
of Guassa were communal grazing lands, but are now
predominantly farmland and constructed areas. Participants
reported that large communal grazing lands are becoming less
common, and farmers are increasingly setting aside marginal
farmland to use as private grazing areas. Grazing near streams
and rivers has also increased.  

Plantation forest: All participants agreed that plantation forests
have been increasing since the Derg period. Plantations were rare
during the Imperial period, and communities would travel 100
km for construction-quality timber. The Derg government
planted large plantations early in the regime, primarily as a soil
and water conservation strategy. By the fall of the Derg 17 years
later, plantation forests were well established. Smaller community
and private plantations have been increasing in number and extent
since the Transition period, and most participants want this
expansion to continue because of the variety of novel ecosystem
services they bring to the region.  

Stone: All participants agreed that rocky areas have increased as
soil erosion has exposed more stones, particularly since the
Transition period.  

Protected grasslands: All participants agreed that both the quality
and extent of the protected grasslands have varied in direct
response to changes in management regimes over the last 40 years.
During the Imperial period, access to the area was heavily
regulated and the species composition was less diverse as guassa
grasses dominated. During the Derg and Transitional periods, the
nine kebeles no longer had the legal right to exclude people from
using the area. This resulted in a large increase in grazing as well
as grass and firewood harvesting inside Guassa from people
within and outside the nine kebeles. Some people from the kebeles
nearest Guassa converted areas of Guassa to farmland. During
the NGO period, as communities struggled to regain land tenure
rights to Guassa, farmers who had moved into Guassa were
evicted and grassland quality slowly improved. The area was last
opened for the traditional grass harvest, grazing, and firewood
collection for two months in 2006, followed by nine years of
closure to “let the area recover” from heavy use in the 1980s and
1990s. In 2010, people in charge of Guassa management decided
to stop allowing grazing and firewood collection entirely. The area
has since been opened exclusively for guassa grass harvest for a
period of 10 to 15 days in the spring of 2015 and again in 2018.
Overall, participants celebrated the regreening of the Guassa area
as an important conservation victory.  
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Water: Most participants (eight kebeles) reported a decrease in
the surface water quantity available on the landscape since the
Derg period because smaller, ephemeral streams are filling with
sediment and limiting their ability to hand-irrigate nearby
farmland. Some perceived the establishment of borehole wells to
have made up for those losses. One kebele (Chare) reported
increasing water because of the creation of a reservoir.  

Farmland: Some changes to farmland had good agreement
among the participants. For example, people did not farm near
Guassa during the Imperial period. However, an increasing
population coupled with villagization programs, i.e., the creation
of new villages, during the Derg period (Ashenafi and Leader-
Williams 2005) led to increased agricultural land use in areas close
to Guassa. However, different narratives arise over changes in
extent of farmland since the Transition period: most participants
(seven kebeles) said farmland area is decreasing because of higher
rates of erosion and loss of soil fertility, leading people to leave
the land fallow, convert it to grazing land, build houses on it, or
plant eucalyptus plantations. One kebele (Gedenbo) maintained
that farmland area has not changed, while another kebele (Kewla)
said farmland area is increasing as grazing lands are converted to
row crops. Despite these different narratives of change to
farmland area, all kebeles were unified in the belief  that farmland
quality has declined since the Derg period, citing loss of soil
fertility and a disappearing belg rainy season that stopped coming
reliably in the early 1990s. One participant explained “we used to
harvest twice a year, so the yields used to be higher ... but the belg
rains have reduced, and sometimes we only harvest once a year
now.” Declines in soil fertility and precipitation have required
various adaptations in farming practices, including increased
fertilizer use, new irrigation infrastructures, and new preferred
cultivars of wheat and barley.  

Native forest: The majority of participants (seven kebeles)
reported that native forest was common during the Imperial
period, but that it has since declined in both quality and extent.
Participants said much of the area that is now shrublands in the
northern ravines used to be dense native forest, but intensive
harvesting of larger species like kosso, bisana, and juniper over
the past few decades has turned it into shrublands similar to those
found within Guassa and along the eastern escarpment. One
kebele (Dargegne) reported that native forest has increased in their
region because of improved local conservation. Chare reported
there was never any significant areas of native forest in their
region, which was supported by our classification and vegetation
analysis.  

Shrublands: Participants made a distinction between shrublands
located in the kebele lands and those located inside Guassa. Four
kebeles (Kewla, Gedenbo, Kuledeha, and Tesfomentir) reported
that their kebele shrublands have been declining from overuse by
local people, including illegal charcoal producers from the nearby
Yifat woreda. Three kebeles (Ferkuta, Dergegne, and Yedi)
reported that kebele shrublands have been increasing because of
improved local conservation, and two kebeles (Chare and Gragne)
reported there were never any significant areas of shrublands in
their kebeles. However, all participants agreed that Guassa
shrublands have been expanding since the NGO period. One
nuisance shrub in particular, nachillo (Helichrysum splendidum),
has been expanding rapidly, with no value for either people or
wildlife.

Vegetation changes
Results indicate that although there are differences in NBR
change across wet and dry seasons in the same time period (Fig.
5), general trends emerge that can be brought into conversation
with the local narratives of change presented above to produce a
more holistic understanding of change (Fig. 6). Between the Derg
and Transition period, NBR generally increased across the study
area (11.8% dry season, 62% wet season). In fact, NBR decrease
occurred over an extremely small area of the total landscape (1.8%
dry season, 0.93% wet season). Guassa experienced NBR increase
in 30.4% of its area in the dry season and 69.3% of its area in the
wet season, which contradicted local narratives of increased
resource use and extraction during this period. NBR decrease was
concentrated in Ferkuta (4.1% of kebele area) and Yedi (9.7% of
kebele area) during the dry season.

Fig. 5. Normalized Burn Ratio change across four periods of
political and management history. Column (a) shows dry
season change, whereas column (b) shows wet season change.
The first row shows change between the Transition period
(1991 – 2003) and Derg period (1985 – 1991), the second row
shows the NGO period (2003 – 2012) minus the Transition
period, and the third row the CoManagement period (2012 –
2017) minus the NGO period. The fourth row shows the overall
change across the entire Landsat record (CoManagement
minus Derg). Note that wet season results in the first and
second rows are being influenced by the scan-line corrector
failure in Landsat 7, resulting in some striping patterns that are
not a reflection of vegetation change on the landscape.
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Fig. 6. Timeline of change across multiple data sources.

From the Transition to the NGO period, NBR generally
decreased across the total landscape (8.2% dry season, 27.5% wet
season). These decreases were widespread across the landscape in
the wet season, but disproportionately impacted the ravines in
Dargegne (12.7% of kebele area), Kewula (14.6% of kebele area),
and Yedi (18.4% of kebele area) in the dry season. NBR increases
were small across the entire landscape (2.3% dry season, 6.3% wet
season) and located primarily in Gedenbo (11.5% of kebele area),
Gragne (16.1% of kebele area), and Tesfomentir (15.2% of kebele
area) in the wet season.  

From the NGO to the Comanagement period, NBR generally
decreased across the landscape (6.5% dry season, 10.1% wet
season), though NBR increases were also widespread in the wet
season (2.2% dry season, 10.6% wet season). NBR decreases were
most pronounced in the southern ravines and in Guassa, which

contradicted local narratives of conservation success during this
period. NBR increases were concentrated mostly in Dargegne
(19.8% of kebele area) and Gragne (18.4% of kebele area) in the
wet season.  

Vegetation change across the entire time period, i.e., between
Comanagement and Derg periods, revealed particularly severe
dry season NBR declines in the northern and southern ravines
and in the southeastern parts of Guassa, Ferkuta, and Yedi.
Overall change in the wet season showed general NBR increase
in the kebele lands and patches of NBR decrease inside the Guassa
area. Of the land classes, only water and plantation forest showed
a significant change (NBR change +/- 0.2) across the study area.
The mean NBR change across all plantation forest pixels was 0.2
in the dry season, though the increase was lower in Tesfomentier
and higher in Guassa (Table A1.6). Water NBR values increased

https://www.ecologyandsociety.org/vol25/iss2/art2/


Ecology and Society 25(2): 2
https://www.ecologyandsociety.org/vol25/iss2/art2/

in Chare and Gedenbo because of the creation of the reservoir.
Bare land NBR values increased in Gragne, i.e., bare land became
more vegetated, while grazing land NBR values increased in
Gedenbo. Farmland NBR values increased in all but Dergagne
and Yedi. Native forest showed overall decrease in Gragne,
Kewula, and Tesfomentier, and an overall increase in Ferkuta and
Gedenbo (Table A1.6). Although Dergagne kebele reported
native forest increase in the local narratives, we did not see this in
the vegetation analysis. See Appendix 1 for a detailed breakdown
of percent land area and direction of NBR change for each kebele
and each time period, separated by wet season (Table A1.4) and
dry season (Table A1.5), and a summary of overall mean NBR
change values by land class (Table A1.6).

Precipitation changes
The precipitation analysis supported local narratives of a delayed
and disappearing belg rainy season (Fig. 7). The Mann-Kendall
tests revealed a significant decreasing trend in precipitation during
the belg season (τ = -0.31, p = 0.01). However, there was no
significant trend in either the total annual precipitation (τ = 0.09,
p = 0.46) or the kiremt season precipitation (τ = 0.15, p = 0.20).
The Kruskall-Wallis tests indicate a significant difference in belg
precipitation values across the four periods of political and
management change (χ² = 8.13, p = 0.04). The average belg
precipitation during the Derg regime was 237 mm, falling to 175
mm (Transitional period), 165 mm (NGO period), and finally 162
mm (Comanagement period). Again, no significant differences
were detected across these political-management periods for the
kiremt precipitation (χ² = 4.21, p = 0.24) or total annual
precipitation (χ² = 1.79, p = 0.61).

Fig. 7. Trends in kiremt season (~1 July – 30 September), belg
season (~1 Feb – 30 April), and total annual precipitation. Red
lines indicate a lowess smoothing function applied across the
entire time series. Vertical lines indicate the four periods of
political and management change. Box plots illustrate
differences in median and range of precipitation across those
four periods. The star indicates a significantly higher belg
season precipitation during the Derg period.

DISCUSSION
The iterative MEB process improved our project in multiple ways.
First, local participants had time to reflect and become more
comfortable with interpreting scientific products, and were
offered the chance to refute or add nuance to the interpretation
of remote sensing results. This produced a more holistic
understanding of environmental change. Second, feedback from
local participants ensured final products were valid and relevant
to their needs and objectives. Although not every analysis was
considered valid or relevant to every participant group, the
process resulted in mutual benefits for both science and
management. Third, the identification of uncertainties and
contradictions across knowledge systems encouraged new
learning. These differences point to productive areas of future
research to enhance our understanding of the Guassa social-
ecological system.

Knowledge coproduction yields holistic understanding of change
In our study, local knowledge provided a fine-grained perspective
of place-based environmental change, offering the potential to
extend interpretation of our remote sensing analysis back in time
in the absence of other ground truth data (Herrmann et al. 2014,
Eddy et al. 2017). Similarly, the broad spatial scale of the remote
sensing analysis enabled us to extend the situated local knowledge
of a limited number of participants across the entire study area.
The temporal continuity of local knowledge is one of the reasons
it is so valuable for interpreting remote sensing time series
(Verburg et al. 2011, Smith et al. 2019), yet temporal biases have
been observed in other studies that should be recognized. For
example, people tend to view the past move positively than the
present (Hermann et al. 2014); emotional experiences tend to
influence the way people describe those years (Daw 2010); and
general trends are sometimes less noticeable compared to extreme
events because of a “shifting baseline” (Pauly 1995, Eddy et al.
2017). Remote sensing also experiences biases, notably from
sensor, solar, atmospheric, and topographic effects that require
extensive preprocessing (Young et al. 2017) and the disconnect
sometimes observed between satellite-derived trends and the
reality of ground conditions (Hermann et al. 2014, Eddy et al.
2017).  

Our analysis demonstrates the complementarity of these
approaches, illustrating some ways they worked to overcome each
other’s biases. For example, the remote sensing products were
particularly effective for prompting participants to discuss what
was happening around different dates of interest and how that
might have impacted vegetation patterns on the landscape. This
encouraged participants to move beyond their recollection of only
high-profile, extreme events (Nazarea 2006, Daw 2010). For
example, the rise and fall of the Derg regime were two extreme
change points that were referred to repeatedly throughout the
group interviews. By contrast, the vegetation change analysis
instigated a new conversation about the ways in which NGO
involvement unexpectedly triggered a brief  episode of
environmental degradation. It was during a local election in 2005,
when one of the candidates ran on a platform telling everyone
that “the white people stole your Guassa!” and that he would get
it back for them if  he was elected. Illegal grazing and harvesting
increased during the months afterward because people believed
the Guassa area had been sold to foreigners and this perceived
land tenure insecurity led to unsustainable resource extraction.
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This recollection was prompted by the observed declines in NBR
values during this period, which contradicted local narratives that
said overall, Guassa was recovering (Fig. 6). Stories like these,
instigated by the remote sensing analysis, revealed the direct
impact that Guassa’s protected status has on peoples’ behavior,
reflecting the importance of secure land tenure throughout the
highlands (Lanckriet et al. 2015).  

The iterative MEB process allowed us to reflect on our learning
over time and build more nuanced understanding of change
across these multiple knowledge systems. In our first workshop,
participants immediately attributed areas of vegetation decline
to local behaviors related to changing land tenure and
management (e.g., overgrazing or lack of soil conservation
activities) rather than a result of biophysical differences across
kebeles (e.g., precipitation or soil fertility). In the second
workshop, we introduced the precipitation analysis and multiple
vegetation change maps across different days of the year in
response to participant uncertainties regarding the impact of
seasonal activities on NBR. Participants in the second workshop,
who were almost entirely the same individuals, then proposed
more nuanced explanations for how regional to global drivers of
change were interacting with local behaviors to produce the
patterns observed in the maps. For example, we noticed the kebeles
closest to Guassa, and particularly Yedi kebele, seem to be
experiencing the greatest vegetation losses over time. Participants
explained that the kebeles closest to Guassa experience different
precipitation patterns, which is supported by scientific
observations of the rain shadow produced by orographic rainfall
in the Ethiopian highlands (Dinku et al. 2011). The rain is
therefore less abundant and less consistent in areas close to
Guassa, causing farmers to rely more heavily on two growing
seasons to accumulate enough crops to meet subsistence needs.
The loss of the belg rainy season is thus causing a shift in farmer
behavior across the study area; farmers farther from Guassa are
more likely to shift to a single growing season, while farmers
closest to Guassa are not willing to risk this change. These
differences in perceived risk and behavior change were thought
to have impacted the spatial patterns of NBR change observed
at the kebele level (Figs. 5 and 6).

Mutual benefits for science and management
Our findings support the idea that projects that draw on a diversity
of knowledge systems can produce new knowledge with high
validity and utility across diverse participants (Laidler 2006,
Armitage et al. 2011, Berkes 2012). For example, our MEB
approach resulted in maps that contributed to the ability of
Guassa area managers to understand and react to environmental
change. Local knowledge further enabled us to contextualize this
environmental change in terms of ecosystem services affected
(Naidoo and Hill 2006). Anderson et al.’s land cover classification
is widely used by remote sensing analysts and considers stone and
bare land to be part of the same land cover class (Anderson et al.
1976). However, local participants rejected merging these two
classes in the supervised classification because of the extreme
differences in ecosystem services provided by them. Participants
explained it was important to distinguish these classes spatially
because bare land has much higher potential for reclamation than
does stone, so identifying specific locations helped administrators
target their conservation and restoration activities. In the
workshops, local participants listed several benefits and uses for

the supervised classification maps, including to help delineate and
agree on boundaries, to advertise for tourism, to identify bare
lands for restoration projects, and to facilitate long-term
planning. These maps characterized the landscape using land
classes that were meaningful to local residents in terms of the
ecosystem services they provided, which increased their perceived
value.  

Tailoring the maps to local understandings of the landscape also
produced unexpected and useful information for scientists.
Grazing lands and protected grasslands were separated in the
classification as a result of local knowledge about differences in
species composition and land uses. An examination of the
ecosystem services provided by these two types of grassland
helped us identify potential differences in ecosystem function that
may translate to broader implications for soil fertility and carbon
storage. For example, the high value of guassa grass as a
construction material indicates that it may be more recalcitrant,
slower to decompose, and lead to more carbon accumulation in
soil compared to grazing land grasses that are higher quality
forage (De Deyn et al. 2008). Although the implications of these
findings are beyond the scope of this paper, they were important
results to discuss as a group because although the guassa grass is
a cultural keystone species providing unique and valuable
ecosystem services, very little is known about its ecological role
in the conservation area.  

Our findings emphasize the importance of achieving a balance
between internally valid observations, and observations that carry
weight and meaning across knowledge systems (Tengö et al. 2014).
From a scientific perspective, the NBR and CHIRPS change
results were rigorous and helpful for triangulating our spatial and
temporal observations of change. However, these analyses were
not considered particularly useful by local participants, who
viewed them as providing different perspectives on the same
problem. “We told you this the last time you came,” they said to
the researchers. “Your research keeps showing us the problem ...
we need research that shows us the solution.” Local participants
felt that their descriptions of precipitation and vegetation change
did not need to be confirmed by these additional sources, even
though contradictions arose between the different types of
knowledge. These results point to the role of compromise in
collaborative environmental research, indicating that all
participants need not find the same value in all aspects of the
project in order for successful knowledge coproduction to occur.

Uncertainty and contradiction encourage new learning
Although the general results of our classification and vegetation
change analysis reflect those of other studies in the Ethiopian
highlands, for example, the timing of vegetation declines and
emergence of plantation forests (de Mûelenaere et al. 2014, Jacob
et al. 2016), we also observe some differences with other studies
conducted in the region. Our precipitation change results indicate
that the vegetation changes observed are likely not due to
differences in precipitation across time periods, though the
significantly higher belg precipitation during the Derg period may
have influenced the increasing NBR values from the Derg to
Transition periods to some degree. These results differ from other
studies that show a strong relationship between precipitation
variation across time periods and particularly woody vegetation
cover (Annys et al. 2017). One potential explanation for these
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differences is the relatively high mean annual precipitation of the
Guassa area compared to other places in the highlands; vegetation
in wetter areas does not always respond in direct and proportional
ways to precipitation (Rishmawi et al. 2016) and woody vegetation
in particular shows a saturating relationship with precipitation
whereby maximum tree cover is observed at any level above 650
mm (Sankaran et al. 2005). To better quantify and explain these
differences, future research should focus on a more nuanced
analysis of antecedent rainfall and attempt to decouple the
impacts of climate from other impacts to vegetation (Eddy et al.
2017).  

Our findings revealed a need for greater attention to the spatial
and temporal variability of environmental change across this
seemingly homogeneous cultural landscape. Farmland, stone,
and shrublands occupy the largest land areas in the region, yet
farmland and shrublands also have some of the greatest
inconsistencies among local narratives of change, while stone and
shrublands have some of the highest classification errors (though
still within acceptable error ranges). These inconsistencies and
errors indicate there is a need for improved understanding of
variability within these dominant land classes, as kebeles may be
experiencing different changes to those classes across the
landscape. On the other side of the spectrum, careful attention is
also required for the land classes with the smallest land areas.
Native and plantation forest occupy the smallest areas across the
kebeles, yet provide the highest number of ecosystem services.
Many of the ecosystem services found in native forest, plantation
forest, and shrublands are overlapping, and that redundancy may
act as a buffer against future environmental change (Raudsepp-
Hearne et al. 2010) for the most important ecosystem services.
However, lesser valued services found exclusively in native forest
are doubtlessly facing eradication given the high agreement across
knowledge systems that this land class is rapidly declining in both
area and quality (Fig. 6). Our MEB approach thus enabled us to
assist decision makers in understanding the need to assess how
each kebele is differently impacted by ongoing environmental,
land use, and land tenure change.  

Although our MEB approach revealed multiple complementary
findings across knowledge systems, we also identified compelling
areas of disagreement that point to areas for future research. The
most pronounced contradiction between local narratives of
change and the vegetation change analysis regarded the health of
vegetation within Guassa. Local narratives focused on local
grazing and firewood harvesting practices, maintaining that
Guassa was experiencing a regreening period after decades of
unsustainable use caused by insecure land tenure. However, the
remote sensing analysis revealed large areas of vegetation decline
in Guassa since 2003 using NBR as an indicator of vegetation
productivity and structure (Fig. 6). Iterative conversations at the
coproduction workshops revealed that nachillo, a native shrub
considered by locals to be a pest, had been expanding within the
grasslands since about 1995. Given the differences in vegetation
structure between the shrubs and grasses, we determined it was
likely that this change in species composition was responsible for
the moderate declines observed in NBR values. Specifically, we
posit that shifts from satellite detection of primarily
photosynthetic vegetation to woody shrubs with low leaf area
could depress near infrared reflectance and increase shortwave
infrared reflectance. Thus, these differences in spectral signatures

led scientists to initially interpret the remote sensing results as
contradictory to the regreening trends observed by locals. The
invasion of this shrub is considered a threat to the future
sustainability of Guassa as it appears to be competing with the
guassa grasses for habitat. Because of the potential impacts on
ecosystem function and ecosystem services, we collectively agreed
shrub encroachment was the most valuable issue to address next
using our coproduction process. This process of discovering new
insights and ideas for future study is an integral part of knowledge
coproduction, which emphasizes the importance of investigating
contradictions rather than concealing or overlooking them
(Huntington et al. 2004, Moller et al. 2004, Gagnon and Berteaux
2009, Gearheard et al. 2010, Etienne 2013, Klein et al. 2014, Tengö
et al. 2014).

CONCLUSION
In this paper, we present the results from a multiple evidence based
(MEB) approach (Tengö et al. 2014) to knowledge coproduction,
which brought together insights from local and scientific
knowledge using ethnographic and remote sensing methods. We
produced a holistic understanding of environmental change in a
community-protected grassland in the Ethiopian highlands,
informing potential impacts on locally defined land classes and
their associated ecosystem services. Our results highlight how
integrating local and scientific knowledge can reveal gaps in
system understanding, and how contradictory observations
across knowledge systems can inspire new understanding and
future research. Our project emphasizes the value of iterative
approaches that allow local participants to more confidently
inform remote sensing interpretations, and in turn allow scientists
to clarify translations and interpretations so that local knowledge
is accurately represented.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/11325
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Appendix 1 

 

 

 

 

Fig. A1.1. Participatory map drawn by residents of kebele 15 (Gragne).  
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Fig. A1.2. Map displaying the distribution of training points used for each land class in the 

random forest classifier.  
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Fig. A1.3. The number of cloud-free images per pixel across the study area. 
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Fig. A1.4. Spline interpolation results for four pixels in our study area showing changes across 

political and management periods in a) shrublands, b) plantation forest, c) grazing land, and d) 

protected grassland. For example, the blue line (Derg period) demonstrates the seasonal pattern 

of the vegetation prior to the establishment of a plantation forest, while the green, black, and red 

lines are showing the seasonal pattern of the plantation forest in subsequent periods, which is far 

less variable.  There are 70 images in the Derg period (44 with <50% cloud cover), 148 images 

in the Transition period (87 with <50% cloud cover), 147 images in the NGO period (86 with 

<50% cloud cover), and 232 in the Co-management period (135 with <50% cloud cover). 
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Fig. A1.5. Total annual precipitation (from CHIRPS). Wet years (in blue, precip > 1300 mm) and dry years (in red, precip < 1000 

mm) were fairly evenly distributed throughout the study period except for the NGO period. 
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Table A1.1. The confusion matrix for the supervised classification demonstrates the ability of the 

model to correctly classify a set of training points for each land class using a cross-validation 

approach. The kappa value for this classification was 0.85.  
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Table A1.2. Top panel shows square kilometers of each land class, separated according to kebele 

and the Guassa area. Bottom panel shows the percent of land area occupied by each land class 

for each kebele and the Guassa area.  
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Water 0 0.04 0 0 0.04 0 0 0 0 0

G
u

a
ss

a

C
h

a
re

D
a

rg
eg

n
e

F
er

k
u

ta

G
ed

en
b

o

G
ra

g
n

e

K
ew

u
la

K
u

le
d

eh
a

T
es

fo
m

en
ti

er

Y
ed

i

Farmland 1.7% 52.2% 45.5% 54.4% 59.1% 48.1% 29.3% 43.7% 39.8% 33.5%

Stone 4.1% 30.3% 19.3% 16.6% 24.1% 19.0% 12.9% 18.2% 17.8% 8.2%

Shrubland 27.9% 0.3% 10.7% 4.5% 0.3% 13.4% 23.3% 12.8% 13.0% 24.6%

Bare Land 0.0% 6.8% 7.2% 5.6% 7.5% 9.3% 11.9% 7.4% 16.7% 2.8%

City 0.0% 0.0% 0.6% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%

Water 0.0% 0.1% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland

1.5% 2.3% 1.1% 1.1% 1.4%

6.1% 6.3% 1.6% 11.0%

3.5% 1.3% 0.9% 3.1% 2.7%

2.2% 0.0% 6.9% 0.3% 0.0% 1.3%

7.3% 14.1% 10.1% 10.1% 15.3%

0.0% 0.2% 0.0% 2.8%

2.6% 7.7% 7.2% 11.5% 6.1%

58.2% 1.3% 1.7% 3.7% 0.0% 0.0%

0.8 1.7 0.5 0.4 0.4

4.5 2.8 0.6 3.1

2.7 0.4 0.3 1.1 0.8

1.7 0 2.4 0.1 0 0.7

3.9 10.4 4.5 3.8 4.3

0 0.1 0 0.8

2 2.4 2.5 4.1 1.8

45.5 0.4 0.6 1.3 0 0
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Table A1.3. The percent of land area and direction of vegetation change (from NBR values) for 

each kebele and the Guassa area across each period of political and management history (wet 

season).  

  

NBR

G
u

as
sa

C
h

ar
e

D
ar

ge
gn

e

Fe
rk

u
ta

G
ed

en
b

o

G
ra

gn
e

K
ew

u
la

K
u

le
d

eh
a

Te
sf

o
m

en
ti

er

Ye
d

i

High 

Increase
0.1% 0.5% 0.2% 1.2% 0.8% 0.4% 0.5% 0.7% 0.2% 0.5%

Low 

Decrease
0.2% 0.7% 2.1% 0.6% 0.5% 2.5% 0.3% 0.6% 1.1% 1.5%

High 

Increase
0.0% 0.0% 0.0% 0.0% 0.1% 0.2% 0.0% 0.0% 0.7% 0.0%

Low 

Decrease
32.8% 29.8% 37.1% 37.3% 18.1% 12.8% 33.3% 29.8% 11.4% 26.6%

High 

Increase
0.0% 0.1% 0.0% 0.0% 0.1% 0.1% 0.0% 0.1% 0.0% 0.0%

Low 

Decrease
23.3% 2.5% 2.5% 8.1% 5.1% 7.5% 7.2% 8.5% 10.9% 12.5%

C
o

-M
an

ag
ed

 -
 N

G
O

5.4%

82.0%

0.1%0.0% 0.0%

Tr
an

si
ti

o
n

 -
 D

er
g

50.7%

47.3%

0.0%

N
G

O
 -

 T
ra

n
si

ti
o

n

2.0%

71.4%

0.1%

81.5%

High 

Decrease
0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

77.7% 81.6% 79.5% 74.0% 83.5% 83.7%

10.2% 15.3% 18.3% 9.3% 7.7% 7.6%
Low 

Increase
2.9% 16.9% 19.8%

No 

Change
73.8% 80.5%

0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

70.3% 70.9% 61.9% 65.8% 72.6%

High 

Decrease
0.0% 0.1% 0.1%

16.1% 4.8% 4.4% 15.2%

No 

Change
66.8% 63.7% 61.1% 59.9%

0.0% 0.0%

Low 

Increase
0.4% 6.4% 1.7% 2.7% 11.5%

50.1%

High 

Decrease
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

51.5% 25.8% 31.1% 56.5% 28.9% 24.8%

72.3% 67.6% 40.6% 70.3% 74.0% 48.6%
Low 

Increase
69.2% 65.7% 46.2%

No 

Change
30.5% 33.2%
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Table A1.4. The percent of land area and direction of vegetation change (from NBR values) for 

each kebele and the Guassa area across each period of political and management history (dry 

season).  

NBR

G
u

as
sa

C
h

ar
e

D
ar

ge
gn

e

Fe
rk

u
ta

G
ed

en
b

o

G
ra

gn
e

K
ew

u
la

K
u

le
d

eh
a

Te
sf

o
m

en
ti

er

Ye
d

i

High 

Increase
1.5% 0.1% 0.1% 0.1% 0.0% 0.3% 0.2% 0.1% 0.0% 0.4%

Low 

Decrease
0.7% 1.0% 1.8% 4.1% 0.0% 1.2% 1.7% 0.6% 1.2% 9.3%

High 

Increase
0.1% 0.0% 0.1% 0.2% 0.0% 0.1% 0.2% 0.0% 0.1% 0.0%

Low 

Decrease
4.0% 2.4% 12.5% 6.9% 3.4% 8.0% 14.2% 6.6% 4.8% 18.4%

High 

Increase
0.1% 0.1% 0.0% 0.1% 0.2% 0.0% 0.0% 0.1% 0.0% 0.1%

Low 

Decrease
21.8% 0.2% 2.5% 3.4% 0.2% 1.9% 4.5% 6.8% 1.8% 5.7%

0.0% 0.0%

90.1%

High 

Decrease
0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.1% 0.0%

94.2% 95.6% 95.4% 93.3% 92.1% 95.8%

4.0% 2.7% 2.1% 1.0% 2.4% 4.0%

C
o

-M
an

ag
ed

 -
 N

G
O

Low 

Increase
1.4% 2.1% 1.5% 2.2%

No 

Change
76.8% 97.5% 95.8%

0.0% 0.1% 0.4% 0.0% 0.0% 0.2%

90.5% 83.2% 92.4% 93.6% 79.1%

High 

Decrease
0.0% 0.0% 0.1% 0.0%

2.0% 1.0% 1.6% 2.3%

No 

Change
91.2% 96.6% 86.4% 90.0% 95.0%

0.0% 0.4%

N
G

O
 -

 T
ra

n
si

ti
o

n Low 

Increase
4.7% 1.0% 0.8% 2.9% 1.6% 1.3%

75.5%

High 

Decrease
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

92.1% 93.8% 91.3% 87.7% 88.2% 95.0%

6.1% 7.2% 10.4% 11.1% 3.8% 14.4%

Tr
an

si
ti

o
n

 -
 D

er
g Low 

Increase
29.0% 3.2% 7.0% 3.8%

No 

Change
68.9% 95.8% 91.1%



10 
 

 

Table A1.5. Relative variable importance (calculated by mean decrease in accuracy) for each predictor variable. Variables are 

presented in mean decreasing importance across all land classes.    

 

Variable Water

Plantation 

Forest

Grazing 

Land Farmland Stone

Bare 

Land

Shrublan

d

Native 

Forest Guassa

Mean 

Decrease 

Accuracy

elevation 8.5 55.2 42.2 65.5 36.0 45.6 52.1 64.2 138.5 158.7

CoMgmt_DOY253 12.5 43.6 53.4 61.4 134.9 38.4 34.9 25.5 52.3 130.8

Derg_DOY40 8.6 61.2 38.1 54.6 39.9 30.4 61.2 90.2 44.8 110.7

greenness 17.2 59.3 47.9 86.2 75.3 30.4 53.6 14.0 72.8 106.4

Band 4 21.6 49.6 46.8 56.5 53.9 90.4 78.5 64.3 69.5 94.5

Band 3 21.7 49.5 40.8 56.4 31.8 87.8 40.5 31.5 59.9 88.3

slope 8.8 26.3 44.4 47.6 28.5 15.2 67.1 28.8 29.3 87.9

Band 5 14.5 28.3 54.9 56.5 61.9 43.6 37.9 17.2 43.6 87.0

CoMgmt_DOY40 19.4 66.5 36.5 73.9 61.0 37.0 50.2 59.0 58.2 85.3

NGO_Trans_DOY253 -4.1 34.2 20.3 53.2 44.8 13.8 32.5 37.7 38.9 84.6

NGO_Trans_DOY40 -0.5 63.1 13.2 24.2 33.6 29.2 21.5 27.6 24.3 83.4

Band 6 12.9 44.4 64.9 53.3 42.6 32.1 50.4 37.6 60.3 83.2

NGO_DOY253 5.9 31.8 43.3 24.4 61.0 35.8 25.9 15.8 44.2 83.1

Trans_Derg_DOY40 2.2 58.4 12.9 17.2 37.6 15.3 22.1 45.9 25.1 83.0

Derg_DOY253 10.9 51.3 39.5 19.9 44.2 29.2 44.8 33.8 48.7 82.4

Transition_DOY253 4.5 34.7 48.9 31.8 52.6 24.5 25.8 15.0 54.1 80.1

Transition_DOY40 2.9 37.2 33.8 48.9 33.8 23.0 38.1 53.0 41.9 80.1

CoMgmt_NGO_DOY253 13.7 37.9 16.8 29.7 56.8 10.3 23.7 33.8 21.1 77.3

CoMgmt_NGO_DOY40 16.0 55.2 15.8 17.6 27.2 26.0 12.0 16.7 38.2 75.9

Trans_Derg_DOY253 -1.0 50.8 21.0 5.8 29.4 8.1 28.1 43.6 26.3 72.2

NGO_DOY40 6.3 43.6 30.0 48.8 38.2 29.4 34.0 58.6 36.4 72.0

Band 2 16.4 40.5 41.5 46.8 39.7 56.6 43.2 34.1 52.3 63.9

wetness 14.8 38.5 30.7 26.8 26.7 18.1 35.2 33.8 36.6 62.5

brightness 9.7 28.1 42.9 36.0 28.5 36.1 33.3 26.5 37.3 61.7

Band 1 12.5 33.9 27.0 36.8 22.7 45.3 26.9 24.0 43.1 56.1

Band 7 15.0 38.1 40.2 32.0 26.1 36.4 35.3 38.4 38.2 55.1

aspect -2.4 -1.7 6.0 4.1 1.5 9.0 13.1 7.9 14.1 20.1
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Table A1.6. Mean NBR change values from Derg to the Co-management period, by land class. 

 

Dry Season Bare Land Farmland

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland Shrubland Stone Water

Chare 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4

Dergagne 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Ferkuta 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0

Gedenbo 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.3

Gragne 0.0 0.0 0.0 -0.1 0.2 0.0 0.0 0.0

Guassa 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0

Kewula 0.0 0.0 0.0 -0.1 0.2 0.0 0.0 0.0

Kuledeha 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Tesfomentier 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0

Yedi 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

Wet Season Bare Land Farmland

Grazing 

Land

Native 

Forest

Plantation 

Forest

Protected 

Grassland Shrubland Stone Water

Chare 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.2

Dergagne 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

Ferkuta 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Gedenbo 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.2

Gragne 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Guassa 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

Kewula 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Kuledeha 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Tesfomentier 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0

Yedi 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
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