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A B S T R A C T   

As global environmental change continues to accelerate and intensify, science and society are turning to trans-
disciplinary approaches to facilitate transitions to sustainability. Modeling is increasingly used as a technological 
tool to improve our understanding of social-ecological systems (SES), encourage collaboration and learning, and 
facilitate decision-making. This study improves our understanding of how SES models are designed and applied to 
address the rising challenges of global environmental change, using mountains as a representative system. We 
analyzed 74 peer-reviewed papers describing dynamic models of mountain SES, evaluating them according to 
characteristics such as the model purpose, data and model type, level of stakeholder involvement, and spatial 
extent/resolution. Slightly more than half the models in our analysis were participatory, yet only 21.6% of papers 
demonstrated any direct outreach to decision makers. We found that SES models tend to under-represent social 
datasets, with ethnographic data rarely incorporated. Modeling efforts in conditions of higher stakeholder diversity 
tend to have higher rates of decision support compared to situations where stakeholder diversity is absent or not 
addressed. We discuss our results through the lens of appropriate technology, drawing on the concepts of boundary 
objects and scalar devices from Science and Technology Studies. We propose four guiding principles to facilitate the 
development of SES models as appropriate technology for transdisciplinary applications: (1) increase diversity of 
stakeholders in SES model design and application for improved collaboration; (2) balance power dynamics among 
stakeholders by incorporating diverse knowledge and data types; (3) promote flexibility in model design; and (4) 
bridge gaps in decision support, learning, and communication. Creating SES models that are appropriate tech-
nology for transdisciplinary applications will require advanced planning, increased funding for and attention to the 
role of diverse data and knowledge, and stronger partnerships across disciplinary divides. Highly contextualized 
participatory modeling that embraces diversity in both data and actors appears poised to make strong contributions 
to the world’s most pressing environmental challenges.  

* Corresponding author at: Colorado State University, Natural Resource Ecology Lab, Campus Delivery 1499, Fort Collins, CO 80523-1499, USA. 
E-mail addresses: Cara.Steger20@alumni.colostate.edu (C. Steger), Julia.Klein@colostate.edu (J.A. Klein).  

Contents lists available at ScienceDirect 

Global Environmental Change 

journal homepage: www.elsevier.com/locate/gloenvcha 

https://doi.org/10.1016/j.gloenvcha.2020.102201 
Received 28 April 2020; Received in revised form 12 September 2020; Accepted 3 November 2020   

mailto:Cara.Steger20@alumni.colostate.edu
mailto:Julia.Klein@colostate.edu
www.sciencedirect.com/science/journal/09593780
https://www.elsevier.com/locate/gloenvcha
https://doi.org/10.1016/j.gloenvcha.2020.102201
https://doi.org/10.1016/j.gloenvcha.2020.102201
https://doi.org/10.1016/j.gloenvcha.2020.102201
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gloenvcha.2020.102201&domain=pdf


Global Environmental Change 66 (2021) 102201

2

1. Introduction 

Social-ecological systems (SES) are facing unprecedented challenges 
from global environmental change (Turner et al., 2007). Responding to 
these changes is a central challenge for the management of sustainable 
ecosystems, with far-reaching consequences for human well-being 
(Lambin et al., 2001; Carpenter et al., 2009; DeFries et al., 2012). SES 
are characterized by complex processes with nonlinear dynamics, indi-
rect effects and feedbacks, emergent properties, and heterogeneous links 
that extend across spatial and temporal scales (Liu et al., 2007). These 
characteristics can cause unanticipated outcomes that make environ-
mental management difficult, particularly as decisions are often made in 
the context of limited data and high uncertainty (Polasky et al., 2011). 
Due to the complexity of SES, understanding global environmental 
change is critical for developing effective responses (Ostrom, 2007; 
Turner et al., 2007; Lambin and Meyfroidt, 2010). 

As global environmental change continues to accelerate and inten-
sify, science and society are turning to transdisciplinary approaches to 
facilitate transitions to sustainability (Lang et al., 2012; Barnaud et al., 
2013). Transdisciplinarity is a reflexive approach that brings together 
actors from diverse academic fields and sectors of society to engage in 
co-production and mutual learning, with the intent to collaboratively 
produce solutions to social-ecological problems (Cundill et al., 2015; 
Lemos et al., 2018; Wyborn et al., 2019; Norström et al., 2020). Such 
collaboration enables problems to be understood from multiple per-
spectives, and can expand the scope of potential solutions (Tengö et al., 
2014; Hoffman et al., 2017; Chakraborty et al., 2019; Steger et al., 
2020). This diversity also contributes to the perceived credibility, 
salience, and legitimacy of results (Cash et al., 2003; Cundill et al., 
2015), empowering participants to take ownership of products and 
apply new knowledge to sustainability challenges on the ground (Lang 
et al., 2012; Balvanera et al., 2017). 

Modeling is increasingly used by academics and development ex-
perts to encourage collaboration and learning among diverse groups to 
facilitate decision-making (Bousquet and Le Page, 2004; Barnaud et al., 
2008; Verburg et al., 2016; Voinov et al., 2018; Schlüter et al., 2019). 
While modeling may refer to any kind of qualitative or quantitative 
system representation used to identify and understand patterns or pro-
cesses, in this study we explicitly focus on dynamic models showing 
change over time. Designing models that capture the complexity of SES 
while yielding useful information at relevant scales for management 
remains conceptually and methodologically challenging (Elsawah et al., 
2020). SES modeling is often criticized for failing to address broader 
contexts: operating at too large a scale (O’Sullivan, 2004; Mahony, 
2014), not representing or arbitrarily reducing complex processes to 
abstract quantities (Taylor, 2005; Hulme, 2011; Dempsey, 2016; O’Lear, 
2016), or overlooking end-users’ interests and capabilities (Rayner 
et al., 2005; Nost, 2019). These critiques highlight the need for more 
widespread integration of transdisciplinary and co-production processes 
into SES modeling. Researchers have begun to formulate conceptual 
guides for transdisciplinary applications of SES models (Schlüter et al., 
2019), though gaps remain in the development of theoretical and 
practical recommendations. 

The purpose of this study is to understand how SES models are being 
designed and applied to the challenges of global environmental change 
and to develop guiding principles for transdisciplinary SES modeling. To 
limit the scope of the review, we analyzed 74 peer-reviewed papers 
describing applications of SES models in mountain areas. Mountains are 
a representative system for modeling dynamic processes in complex SES 
as they have high spatial and temporal heterogeneity and attract diverse 
actors with often conflicting worldviews and agendas (Klein et al., 2019; 
Thorn et al., in review). 

To analyze the design and application of SES models, we turn to 
Science and Technology Studies (STS) to conceptualize models as sci-
entific artifacts (Latour, 1986). The field of STS has long advanced the 
social study of science, illustrating how material devices (Latour, 1986), 

embodied practices (Harraway, 1988), and infrastructures (Bowker and 
Star, 1999) shape knowledge production. Here, we focus on models as 
knowledge infrastructures, which Edwards et al. (2013) define as 
“robust networks of people, artifacts, and institutions that generate, 
share, and maintain specific knowledge about the human and natural 
worlds” (p. 23). We draw on three concepts related to knowledge in-
frastructures to analyze the design and application of SES models: 
appropriate technology (Fortun, 2004), boundary objects (Star and 
Griesemer, 1989), and scalar devices (Ribes, 2014). We use these con-
cepts to explore how SES models influence collaboration around envi-
ronmental problems (Taylor, 2005; Sundberg, 2010; Landström et al., 
2011), shaping the production of new knowledge, relationships, and 
decisions. 

1.1. Conceptual framework: SES models as appropriate technology for 
transdisciplinary applications 

Scholars are calling for a more reflexive consideration of models’ 
embeddedness in socio-cultural contexts and relevance for particular 
places and problems (Taylor, 2005; Crane, 2010). The concept of 
appropriate technology broadens our view beyond the technical cor-
rectness of models, towards this more societal focus. Appropriate tech-
nology emerged from alternative technology movements of the mid- 
twentieth century, and refers to tools, techniques, and machinery used 
to address livelihood and development problems in ways that are sen-
sitive to place-based needs, as opposed to one-size-fits-all solutions. STS 
researchers have applied the concept to other contexts, such as ques-
tioning how scientists acquire “the right tools for the job” (Clarke and 
Fujimura, 1992; de Laet and Mol, 2000). Following Fortun (2004), an 
SES tool such as simulation modeling could be considered appropriate 
technology when it is “designed in a way attuned to the material, po-
litical, and technological realities with which it works, and to the social 
actors who will be its users” (p.54). For example, Fortun (2004) de-
scribes the development of a publicly-available pollution database and 
website in the early 2000s, which allowed the public to search for toxic 
releases by company name and to learn about subsequent risks to human 
and environmental health. This website was appropriate technology for 
the time given that key aspects to US environmentalism were open 
source technologies, corporate transparency, and complexity science. 

In this paper, we examine whether SES models are appropriately 
designed for contemporary transdisciplinary applications that aim to 
understand and overcome the challenges presented by global environ-
mental change. These challenges demand societally-relevant integration 
of data and stakeholder perspectives across spatial and temporal scales, 
yet this is difficult to accomplish due to: (1) diverse and sometimes 
contradictory stakeholder objectives and worldviews (Etienne et al., 
2011; Etienne, 2013; Lade et al., 2017), including epistemological rifts 
between the socio-cultural and computational sciences that prevent 
detailed representations of social processes in SES models (Taylor, 2005; 
Crane, 2010; Verburg et al., 2016; Voinov et al., 2018); and (2) mis-
matching scales of social and ecological processes and associated data 
(Zimmerer et al., 2003; Cumming et al., 2006; Cohen and Bakker, 2014; 
Rammer and Seidl, 2015; Lippe et al., 2019). By employing the con-
ceptual framework of models as “appropriate technology,” our evalua-
tion focuses on how SES models span social boundaries and spatial 
scales. We use the concepts of “boundary objects” and “scalar devices” to 
explore how SES models bring together diverse groups of people with 
the aim of improving understanding and management of SES (boundary 
objects, section 1.1.1), and how SES models can help understand cross- 
scale and cross-level dynamics (scalar devices, section 1.1.2). We pro-
pose that SES models that achieve these dual objectives can best function 
as appropriate technology (Fig. 1). 

1.1.1. Models as boundary objects 
Traditionally, model design has been the purview of scientific 

research communities. However, recent attempts to incorporate more 
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diverse stakeholder perspectives have led to the co-design of SES 
models, allowing for different understandings, values, and worldviews 
to be elicited, visualized, and negotiated in the pursuit of a shared 
“boundary object” or system representation (Zellner, 2008; Etienne 
et al., 2011; Etienne, 2013; Edmonds et al., 2019). Boundary objects are 
conceptual or material items that emerge through collaboration, 
remaining both adaptable to local needs yet “robust enough to maintain 
a common identity” across different groups (Star and Griesemer, 1989, 
pg. 393). Stakeholders can hold different, sometimes conflicting, ideas 
about boundary objects yet still collaborate through them. One example, 
described by Star and Griesemer (1989), includes a bird in a natural 
history museum: the specimen carried different value and meaning to 
amateur bird watchers, professional biologists, and taxidermists, who 
worked together using the boundary object while maintaining different 
epistemic perspectives. In this way, boundary objects enable people to 
work together across knowledge systems despite syntactic and semantic 
differences in understanding (Carlile, 2002), illustrating how collabo-
ration can occur without requiring consensus. 

The boundary object concept has been widely applied outside STS 
given its utility in understanding the process of collaboration in inter- 
and trans-disciplinary settings (Clark et al., 2011; Steger et al., 2018). 
Here, we examine how SES models can function as boundary objects for 
transdisciplinary work, exploring how a model can span multiple social 
worlds beyond one system or knowledge type (Clarke and Star, 2008). 

1.1.2. Models as scalar devices 
A core challenge of modeling SESs is the scalar mismatch (Zimmerer 

et al., 2003) occurring between social and ecological processes and the 
data that represent them (Walker et al., 2004; Cumming et al., 2006; 
Rammer and Seidl, 2015). For example, models that forecast regional 
climate change may not have adequate spatial resolution to incorporate 
local level human drivers like land use change, yet it is the combination 
of these multi-scalar drivers that could pose the highest risk and un-
certainty for the system (Altaweel et al., 2009). Efforts to address these 
scalar issues are limited by computing power, data availability, and the 
ability to make inferences from highly complex or complicated models 
(Kelly et al., 2013; Verburg et al., 2016; Lippe et al., 2019). Here, we 
examine how models are used as “scalar devices” to conceptually shift 
between temporal or spatial scales, thus aiding users in overcoming this 
scalar mismatch. 

Ribes (2014) proposed the ethnography of scaling as a 

methodological approach for studying long-term scientific enterprises, 
where scalar devices are the tools and practices researchers use to 
represent, understand, and manage large-scale objects or systems that 
cross multiple levels of organization (Ribes and Finholt, 2008). For 
example, Ribes examines how scientists used agendas, slides, and notes 
as scalar devices to summarize current and future disciplinary needs 
across multiple scales when creating the geosciences network known as 
GEON. These tools condensed months of work across disparate groups of 
scientists into concrete objects and representations that could be 
examined and questioned within the same room at the same time, thus 
translating a large and complex system into a more approachable 
format. Scalar devices can also refer to social activities such as all-hands 
meetings that bring together networks of people to deliberate and 
communicate about large-scale spatial and temporal dynamics. In this 
paper, we conceptualize SES models as scalar devices to understand how 
they are used to isolate certain components and feedbacks in SES so that 
these systems might be more clearly understood, predicted, and 
managed across scales. 

Below, we describe patterns in how SES models are designed and 
used to address cross-disciplinary and cross-scalar processes. We draw 
on these results to re-examine our conceptual framework (Fig. 1) that 
places appropriate technology for SES modeling at the intersection of 
the boundary object and scalar devices concepts. In light of these results, 
we propose a set of guiding principles to facilitate the development of 
SES models as appropriate technology for transdisciplinary applications. 

2. Materials and methods 

2.1. Search strategy 

We reviewed literature employing dynamic social-ecological models 
in mountain systems, searching combinations of keywords in the search 
engine Google Scholar (model*; ‘coupled human natural systems’ or 
‘coupled natural human systems’; ‘social-ecological systems’ or ‘socio- 
ecological systems’; ‘change’; ‘management’; ‘mount*’ or ‘highland’ or 
‘alpine’). Keywords were compiled during meetings with experts from 
the Mountain Sentinels Collaborative Network (mountainsentinels.org), 
a group of researchers and other stakeholders working towards moun-
tain sustainability worldwide. We expanded this search by following 
references included in these papers to other studies and via consultations 
with experts. All papers published in English prior to August 2017 were 

Fig. 1. Conceptual relationship between boundary objects and scalar devices, indicating that SES models may function as appropriate technology for trans-
disciplinary applications when they simultaneously span social boundaries and spatial scales (green area). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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considered for inclusion if they contained one overarching modeling 
effort, which in some cases consisted of multiple modeling approaches 
either integrated or presented alongside one another. To be included, 
models needed to be dynamic (showing change over time) and include 
both social and ecological components. Although this search was not 
systematic, the 74 papers we reviewed represent a significant proportion 
of the literature available. 

2.2. Data collection 

Each of the 74 papers (Appendix A) was coded independently by two 
team members according to a codebook developed and tested on five 
papers. Differences were discussed and resolved by a third reviewer as 
needed. We operationalize the concept of appropriate technology by 
assessing characteristics of SES model design and application, including 
the model purpose, stakeholder involvement, and spatial extent/reso-
lution (Table 1). We use these codes as “sensitizing concepts” (Blumer, 
1954) to guide our exploratory analysis and to conceptually bridge be-
tween measurable SES modeling characteristics and the relative ambi-
guity of the STS concepts we described above. 

Design codes focused on the methods used to build the models. 
Model types included eight non-mutually exclusive categories each 
study could include: agent-based, integrated simulation, systems dy-
namics, Bayesian network, cellular automata, mathematical, statistical, 
and GIS. We also noted whether toy models or role-play games were 
used to engage participants. Data types were coded into: “biophysical”, 
“social”, or “social-ecological” categories, which were further specified 
into sub-categories (Table 1). We drew on the data types used to un-
derstand how models act as boundary objects by integrating diverse 
perspectives through data, and what kinds of data are most frequently 
applied to model cross-scale dynamics. See Appendix B for detailed 
definitions of data and model types. 

Coders identified information on the social and spatial scale of the 
models, which we used to assess how models function as scalar devices. 
We divided these data into extent (broadest level) and resolution (nar-
rowest level). We classified social scale according to the organizational 
or administrative levels addressed in the model (Gibson et al., 2000; 
Cash et al., 2006; Preston et al., 2015), organizing them into seven 

qualitative and hierarchical categories: individual, household, commu-
nity, region, nation, multi-nation, or global. We determined whether a 
model considered cross-scale processes by calculating the number of 
social levels crossed between the extent and resolution of the model. For 
example, a model that crossed two scales might go from a regional-level 
extent to a household-level resolution. We also recorded the quantitative 
size of the study area (extent) and the size of the smallest pixel or unit of 
the model (resolution), when available. 

The level of model specificity was assessed via two questions 
regarding the degree of a) contextual understanding and b) general, 
transferable understanding emphasized in the model development and 
application. Contextual and general understanding were ranked inde-
pendently of one another (Table 1; none/low/medium/high), contrib-
uting to our understanding of how SES models act as scalar devices. A 
highly contextual model presented a detailed description of the study 
site and clarified how this context influenced model design and appli-
cation, while a highly generalizable model explicitly and repeatedly 
emphasized how their modeling effort was relevant to other systems. 
Similarly, the theoretical orientation of the model was assessed via two 
questions (ranked independently) regarding the advancement of a) 
theoretical/scientific knowledge and b) societal goals/processes. Ac-
cording to our rubric, a highly scientifically-oriented model clearly 
advanced some research field or theory, while a highly societally- 
oriented model supported a social objective or laid the foundation for 
locally-relevant decision-making (e.g., policy making, management ac-
tion, planning processes, educational tools). Thus the orientation of the 
model sheds light on how these models function as boundary objects. 
These four questions allow us to determine which models were both 
highly contextual and also highly generalizable to other systems, or 
which models managed to achieve high scientific as well as high societal 
relevance. 

Coders extracted all textual references to public participation, which 
included the involvement of any non-researcher stakeholder group. 
These data were categorized into a binary participatory or non- 
participatory variable. Any level of engagement with the public – from 
model conceptualization, design, development, or implementation – 
was considered participatory. Stakeholder diversity was another vari-
able that was either not mentioned in the paper, or coded as none, low, 

Table 1 
Codebook organization.  

Design codes Description Measurement Appropriate 
Technology 

Model purpose 
(intended) 

System understanding; prediction and forecasting; decision 
support; and communication/learning (Kelly et al., 2013) 

Not addressed / secondary purpose / primary purpose Scalar devices 
Boundary objects 

Model specificity Level of context-specificity and level of generalizability None/low/medium/high Scalar devices 
Model orientation Level of scientific orientation and level of societal orientation None/low/medium/high Boundary objects 
Model types Agent-based, integrated simulation, systems dynamics, Bayesian 

Network, cellular automata, mathematical, statistical, or GIS 
Present or absent Scalar devices 

Boundary objects 
Data types Biophysical (e.g. climatic, ecological, hydrological, geologic/ 

topographic) 
Social (e.g. economic, political, demographic, ethnographic) 
Social-Ecological (e.g. land use or livelihoods) 

Present or absent Boundary objects 
Scalar devices 

Model extent Social The broadest organizational level addressed: individual, 
household, community, region, nation, multi-nation, or global 

Scalar devices 

Spatial The size of the study area (e.g., km2) where available 
Model resolution Social The narrowest organizational level addressed: individual, 

household, community, region, nation, multi-nation, or global 
Scalar devices 

Spatial The size of the smallest pixel or modeling unit (e.g., km2) where 
available 

Public participation Whether or not non-researchers were involved in modeling Present or absent Boundary objects 
Stakeholder 

diversity 
What level of stakeholder diversity was present in the system being 
modeled 

Not mentioned/none/low/high Boundary objects 

Application codes 
Model purpose 

(achieved) 
System understanding; prediction and forecasting; decision 
support; and communication/learning (Kelly et al., 2013) 

Not addressed / secondary purpose / primary purpose Scalar devices 
Boundary objects 

Policy or planning 
outreach 

Whether or not modeling results were communicated to 
decisionmakers (e.g., policy makers, planners, managers) 

Present or absent Boundary objects  
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or high levels of diversity. Together these variables clarify the diversity 
of people involved in the modeling activity, an important criteria for 
functioning as a boundary object. 

Model purpose refers to the goals of the modeling work and were 
adapted from Kelly et al. (2013) to include: system understanding, 
prediction/forecasting, decision support, and learning/communication 
(see Appendix B). We define the learning/communication purpose as a 
contribution towards “the capacity of a social network to communicate, 
learn from past behaviour, and perform collective action” (Kelly et al., 
2013, pg. 161), which distinguishes it from more general system un-
derstanding. Models designed for decision support include a wide vari-
ety of decision contexts, including multi-criteria analyses, trade-offs in 
decision-making, land use planning, and management actions. Coders 
recorded the intended model purpose and classified whether each 
intention and outcome was addressed as a primary or secondary purpose 
of the project. We used quotations from the text to resolve any differ-
ences between coder ranking. Due to this potential subjectivity, and 
sometimes small sample sizes, we treated the model purpose variables as 
binary Yes (primary or secondary purpose) or No (not addressed) in 
most of our analyses. Finally, coders extracted all references to policy 
and planning outreach, which we translated into a binary code indi-
cating whether or not the model or study results were directly 
communicated to decision makers. 

2.3. Analysis 

We present summary statistics that describe trends in SES modeling 
design and application. We use chi-square or Fisher’s exact tests and t- 
tests as relevant to look for associations between model purpose out-
comes and the various design codes described above. For all tests, we 

consider p < 0.05 to be statistically significant. 

3. Results 

3.1. Model purpose: intention vs. outcome 

Many studies successfully achieved the outcome they intended 
(Fig. 2). Almost three-quarters (73%) of the papers intended system 
understanding to be a primary purpose of the model (n = 54), yet only 
57% (n = 42) achieved it as a primary outcome. Instead, most of these 
papers achieved secondary system understanding outcomes. Prediction/ 
forecasting was not a frequent primary model purpose (n = 21, 28%), 
but was commonly considered a secondary model purpose (n = 35, 
47%). There was little difference between intentions and outcomes for 
the prediction/forecasting purpose, indicating these SES models gener-
ally achieved their intended purpose. These model purposes require 
integrating information about the world across different geographic 
levels and multiple time horizons, thus aligning with the scalar devices 
concept. 

There was considerably greater difference between intentions and 
outcomes for both decision support and learning/communication model 
purposes (Fig. 2), indicating that SES models may face barriers when 
created for these purposes. Decision support was commonly intended as 
a primary model purpose (n = 35, 47%). However, almost half of the 
papers that intended decision support as a primary purpose instead 
achieved it as a secondary purpose (n = 16), and 44% of the papers that 
intended it as a secondary purpose failed to report any successful deci-
sion support outcomes (n = 11). Most papers we reviewed did not 
consider learning/communication to be an intended model purpose (n 
= 46, 62%). Nevertheless, 39% of the papers that intended it as a 

Fig. 2. Number of papers per model purpose, for both intentions and outcomes.  
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secondary purpose failed to report any learning/communication out-
comes (n = 7), while the same number of papers discovered unexpected 
learning outcomes despite having no intention of it. These results point 
to gaps in the ability of SES models to contribute to decision support 
outcomes, and a general inattention to learning/communication model 
purposes. These model purposes are aligned with the boundary object 
concept as they typically rely on significant stakeholder engagement. 
The fact that their intended use fell short of their realized use suggests 
critical gaps in the role of SES models as boundary objects. 

3.2. Model specificity and orientation 

Most models (n = 47, 63.5%) had a highly context-specific focus, 
while only 10.8% (n = 8) were considered highly generalizable, illus-
trating a preference for SES models to focus on particular places and 
their relevant scales of operation rather than generic systems or pro-
cesses. Most models (n = 40, 54%) were also classified as having me-
dium scientific orientation. While scientific or theoretical advancement 
was a common goal of SES modeling efforts, there was less consistency 
for societal goals, as models were roughly evenly distributed across low, 
medium, and high levels of societal orientation. These results again 
highlight potential gaps in how SES models are used as boundary ob-
jects. When analyzing the relationship between model specificity and 
orientation, our results indicated that SES models used to advance so-
cietal goals also tended to be highly context specific (p < 0.01; Fig. 3a), 
while scientific goals appeared to be advanced even at low or nonexis-
tent levels of system-specific context (p = 0.02; Fig. 3b). This points to 
potential synergies between the STS concepts, where SES models are 
more likely to function as boundary objects (i.e., by advancing societal 
goals) when they are created at scales relevant to a particular context. 

We found significant associations between learning/communication 
outcomes and context-specificity (p < 0.00), where most models with 

learning outcomes were also highly context-specific (n = 24, 89%; 
Fig. 4a). This indicates that context specificity is an important charac-
teristic of SES models that function as boundary objects, perhaps by 
enabling stakeholders to recognize and relate to the system represented. 
Learning outcomes also occurred with more regularity across medium to 
high levels of societal orientation (p < 0.00; Fig. 4b), supporting the idea 
that societally-oriented models are more likely to function as boundary 
objects. Decision support outcomes were highest at low to medium 
levels of generalizability (p = 0.04; Fig. 4c) and almost non-existent 
when the models lacked societal orientation (p < 0.00; Fig. 4d). This 
suggests there was some flexibility in achieving decision support out-
comes; if modeling efforts included a modest degree of generalizability 
and societal focus, decision support outcomes tended to occur. However, 
both learning and decision support outcomes were most common at 
medium to high levels of societal orientation, indicating that the pursuit 
of these model purposes may promote the use of SES models as boundary 
objects. 

3.3. Model types 

Of the eight model types, agent-based models (ABM) were the most 
frequently used (n = 48, 64.8%), followed closely by cellular automata 
models (n = 46, 62.1%). In fact, ABM and cellular automata models 
were used together in almost half the studies (n = 36, 48.6%), though 
decision support outcomes were more common when cellular automata 
models were absent (p = 0.02). Mathematical models were also rela-
tively common (n = 34, 45.9%). Learning outcomes were significantly 
higher when toy models or role-play games were used (p < 0.01), 
indicating that models built with stakeholder involvement in mind 
tended to function as boundary objects. No other model types were 
associated with higher model purpose outcomes. 

Studies used one modeling approach (n = 11, 14.8%), or combined 

Fig. 3. Percent of papers per level of context-specificity, according to a) societal orientation and b) scientific orientation.  
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two (n = 30, 40.5%), three (n = 21, 28.3%), or four (n = 12, 16.2%) 
modeling approaches to represent and scale the system in different 
ways. When only one modeling approach was used, system dynamics 
and mathematical models were most frequent. When multiple ap-
proaches were used, ABM and cellular automata models were most 
frequent. We did not find any associations between model purpose 
outcomes and the number of modeling approaches used. 

We did not find significant associations between model type and 
scientific orientation, though mathematical models and system dy-
namics models do have significant associations with societal orientation. 
Specifically, mathematical models were more likely than non- 
mathematical models to have intermediate (low or medium) levels of 
societal orientation (p < 0.00). We also observed a higher proportion of 
system dynamics models with high societal orientation (71%), 
compared to only 18% of non-system dynamics models (p = 0.01). This 
suggests that system dynamics and mathematical models tend to be used 
as boundary objects. We did not find any associations between model 
type and model specificity, indicating that the type of modeling 
approach is unrelated to the context-specificity or generalizability of the 
model. Together, these results demonstrate that the question of model 
type is related more to the role of the model as a boundary object rather 
than as a scalar device. 

3.4. Data types 

We found that SES models tend to under-represent social datasets, 
and are more likely to rely on pre-existing datasets. Models used 
significantly higher numbers of biophysical (μ = 5.0, SE ± 1.2, p < 0.00) 
and social-ecological (μ = 4.3, SE ± 0.9, p = 0.04) datasets compared to 
social datasets (μ = 3.4, SE ± 0.8). The similar number of biophysical 
and social-ecological datasets suggests these data types are roughly 
equally valued for representing dynamic SES. However, the relative lack 
of social datasets may point to gaps in how SES models span multiple 
social worlds. For all data types, secondary datasets (e.g., from the 
literature or published data) were significantly more common than 
primary datasets collected from the study site. The most common 
datasets were ecological (median = 2), followed by land use (median =
1.5) and demographic, economic, climatic, geologic/topographic, and 
SES livelihood datasets (median = 1). Meanwhile political, ethno-
graphic, and hydrologic datasets were infrequently included in models 
(median = 0). 

Our results point to potential tradeoffs between the number of 

biophysical datasets used and model purpose outcomes related to system 
understanding and learning/communication. Models with system un-
derstanding outcomes used significantly higher numbers of biophysical 
datasets (u = 5.1) than those without understanding outcomes (u = 2.8, 
p < 0.02). However, models with learning outcomes used significantly 
fewer biophysical datasets (u = 3.7) compared to those without learning 
outcomes (u = 5.7, p < 0.00). 

3.5. Extent and resolution 

Most models had social extent at the regional and community levels 
and social resolution at either the household or individual level (Fig. 5). 
No models had coarser than a regional resolution. We grouped models 
according to small or large social extent as well as fine or coarse social 
resolution, and found no association with model purpose outcomes. We 
examined patterns between social and spatial scale, finding that 
regional-level extent corresponded to an average study area of 10,815 
km2 (SE ± 4,855 km2) and community-level extent had an average study 
area of 385 km2 (SE ± 348 km2). We also found the average resolution 
was 0.54 km2 (SE ± 0.31 km2) for household-level models, and 0.22 km2 

(SE ± 0.09 km2) for individual-level models. However, quantitative 
information was only provided by 69 papers (93%) for spatial extent and 
56 papers (76%) for spatial resolution. These results shed light on how 
SES models act as scalar devices by integrating information across 
different geographic scales into more compressed representations of the 
system. 

Only seven models in our review focused on a single scale (i.e., had 
the same extent and resolution), and these were found across all model 
types except toy models (Fig. 6). Models crossed either one (n = 17, 
23.0%), two (n = 31, 41.9%), three (n = 13, 17.6%), four (n = 2, 2.7%), 
or five (n = 2, 2.7%) scales. Bayesian networks tended to maintain the 
same extent and resolution (i.e., were not cross-scalar), and system dy-
namics models were most likely to cross just a single scale. Of all the 
model types, only ABMs, ISMs, and mathematical models were observed 
to cross five spatial scales between their extent and resolution. We 
examined whether the number of scales crossed between extent and 
resolution impacted model outcomes, but found no significant associa-
tions. These results indicate that certain model types may be more useful 
than others for representing highly cross-scalar dynamics. However, the 
number of scales crossed is not by itself an adequate measure of what 
constitutes a scalar device, because a higher number of scales crossed 
does not appear to support higher model purpose outcomes. 

Fig. 4. Model purpose outcomes were significantly associated with the context-specificity, generalizability, and societal-orientation of the models.  
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3.6. Public participation, stakeholder diversity, and policy or planning 
outreach 

Roughly half the models in our analysis were participatory (n = 38, 
51.4%). However, only 21.6% (n = 16) demonstrated any direct 
outreach to decision makers (e.g., through a presentation of results or 
workshop). We found higher learning outcomes in participatory models 
(p < 0.00) and models with policy or planning outreach (p < 0.00). 
While not significant, decision support outcomes were also more likely 
with participatory models (n = 30, 79%) compared to non-participatory 
models (n = 21, 58%). Perhaps unsurprisingly, we found a strong as-
sociation between decision support outcomes and models with policy or 
planning outreach (p < 0.00). Finally, we found a significant association 
between outcomes of decision support and levels of stakeholder di-
versity, indicating that modeling efforts where stakeholder diversity is 
present tend to have higher rates of decision support compared to sit-
uations where stakeholder diversity is not present or not addressed. 
Together, these results support our characterization of SES models as 
boundary objects that invite successful collaboration (i.e., learning or 
decision support) between diverse actors who may not otherwise agree. 

4. Discussion 

This study improves our understanding of how SES models are 
designed and applied to address the rising challenges of global envi-
ronmental change, using mountains as a representative system. In this 
section, we discuss the results outlined above by drawing on the con-
cepts of boundary objects and scalar devices to understand how SES 
models operate as appropriate technology (Table 1, Fig. 1). While we 
initially proposed that appropriate technology for SES modeling would 
sit at the intersection of boundary objects and scalar devices, our results 
stress the importance of SES models functioning as boundary objects for 
effective transdisciplinary work to occur. Meanwhile, crossing multiple 
temporal and spatial scales was less critical for appropriate SES 
modeling, and we encourage modelers to instead remain flexible and 
sensitive to end user needs and contexts when designing models. We 
propose four guiding principles to facilitate the development of SES 
models as appropriate technology for transdisciplinary applications: (1) 

increase diversity of stakeholders in SES model design and application 
for improved collaboration, (2) balance power dynamics among stake-
holders by incorporating diverse knowledge and data types, (3) promote 
flexibility in model design, and (4) bridge gaps in decision support, 
learning, and communication. 

4.1. Increase diversity in SES model design and application for improved 
collaboration 

We found that models incorporating diverse stakeholders through 
public participation and policy outreach act as transdisciplinary 
boundary objects by supporting higher learning and decision support 
outcomes. For example, Anselme et al. (2010) used an agent-based 
model to better understand and manage high biodiversity habitats 
threatened by shrub encroachment in the French Alps. Through this 
collaborative process, a forest manager came to appreciate the need for 
genetic diversity in the forest stands he was managing, leading him to 
support the development of a “genetic quality index” to better enable 
managers and scientists to work together. Despite strong learning out-
comes, stakeholders in this process remained skeptical about their 
ability to influence policy formation at higher levels. Smajgl and 
Bohensky (2013) took a more targeted approach to influencing policy in 
their spatial modeling of poverty in East Kalimantan, Indonesia. They 
worked directly with government decision-makers to determine the 
optimal level for petrol prices that would enable more citizens to engage 
in high-income, petrol-dependent livelihoods like fishing and honey 
collection. While both of these participatory examples had high out-
comes of both decision support and learning/communication, they 
differed in the degree to which they targeted specific policy decisions - 
indicating that policy outcomes are not necessary for SES models to 
function as boundary objects. 

Models used in conditions of high stakeholder diversity tended to 
yield higher decision support outcomes compared to models where 
stakeholder diversity was not present or not addressed. While it might be 
expected that situations bringing together people from diverse back-
grounds and perspectives would be a source of conflict, examining these 
results through the lens of boundary objects highlights how SES models 
can work across scientific and social worlds to promote collaboration 

Fig. 5. The number and percentage of models at each extent and resolution level.  
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without requiring consensus. For example, Barnaud et al. (2013) 
examined an agent-based model in the context of conflicting ecological, 
economic, and social interests among stakeholders involved in land 
management in Northern Thailand. The collaborative modeling process 
encouraged stakeholders to reframe their approach to the conflict and 
“move from a distributive to an integrative model of negotiation” (pg. 
156) by setting aside the question of park boundaries for a time and 
instead focusing on a more integrated understanding of the system as 
represented through the model. This enabled them to find potential 
synergies rather than focusing on the conflicting interests of the different 
groups, suggesting the process of creating and using models as boundary 
objects can encourage diverse stakeholders to move past underlying 
disagreements and develop workable solutions. 

Overall, participatory models were strongly represented in our re-
view, indicating that these approaches are no longer on the periphery of 
SES modeling practice in mountains. We find similar patterns 
throughout the literature (Voinov and Bousquet, 2010; Gray et al., 2017; 

Jordan et al., 2018), indicating that the field of participatory modeling is 
maturing rapidly in non-mountain systems as well. Whether by design or 
not, some SES models have functioned as boundary objects by enabling 
the integration of diverse perspectives without sublimating them. 
Diverse perspectives are at the core of transdisciplinary work, as mul-
tiple viewpoints, epistemologies, and values are needed to holistically 
understand complex SES problems and devise solutions with high rele-
vance (Bernstein, 2015; Hoffman et al., 2017; Norström et al., 2020). 
Diversity has also been shown to increase the likelihood of innovation in 
collaborative processes (Paulus and Nijstad, 2003). As SES modeling 
continues to gain traction as a tool for promoting transdisciplinary co- 
production processes, we urge modelers not to lose sight of the need 
for diverse perspectives in the design, evaluation, and application of the 
model so that they can act as boundary objects, and thereby enable 
broader participation and understanding. 

Fig. 6. The proportion of each model type according to the number of scales crossed.  
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4.2. Balance power dynamics by incorporating diverse knowledge and 
data types 

While models with diverse participants were more likely to facilitate 
learning and cooperation, this did not necessarily translate to more 
diverse types of knowledge populating the models themselves. The 
knowledge infrastructure that supports SES modeling currently favors 
quantitative data and modeling approaches over qualitative forms 
(Elsawah et al., 2020). In fact, there are pervasive epistemological gaps 
regarding what is even considered “data” across the natural and social 
sciences, much less how to analyze or validate them (Verburg et al., 
2016; Chakraborty et al., 2019). Our results confirm this gap by showing 
that scientists frequently try to understand SES through the use of pre- 
existing datasets, the majority of which are biophysical rather than so-
cial. By not integrating social data, these models are less likely to reach 
across multiple social worlds and thus less likely to function as boundary 
objects. One reason for this might be the perception that qualitative data 
are exorbitantly expensive in terms of the time and cost of data collec-
tion and processing (Alexander et al., 2019; Elsawah et al., 2020). This 
may reflect a broader SES modeling epistemology that seeks to predict 
and generalize to other systems rather than engage in expensive and 
time-consuming processes at local scales that lack transferability to 
other sites or systems (O’Sullivan et al., 2016). Another reason may be 
that quantitative data are easier to incorporate into computer-based 
models. Indeed, we find that quantitative demographic and economic 
data are the most commonly used social datasets in SES models, while 
ethnographic, descriptively rich data are incorporated into very few 
studies. However, it is possible that modelers may be using qualitative 
data without reporting it in their papers - for example, to conceptualize 
(rather than parameterize) the model. 

There is clear evidence that qualitative data can help place modeling 
results in a broader context, thus enhancing a models’ ability to function 
as a scalar device. For example, Altaweel et al. (2009) demonstrated that 
Arctic peoples’ decisions about where to source their water impacted 
their perceptions of system-wide ecological change, which could in turn 
support or restrict their ability to adapt to climate change in a timely 
manner. Including qualitative data can also help overcome widely 
acknowledged shortcomings of SES models, such as the lack of adequate 
complexity in representing individual decision-making and behavior 
(Müller et al., 2013; Brown et al., 2013; Preston et al., 2015; Schlüter 
et al., 2017; Groeneveld et al., 2017) and the ways in which subjective 
processes associated with human agency and intentionality (i.e., culture 
and politics) drive the evolution of social rules and positions (Manuel- 
Navarrete, 2015). There is some evidence from our analysis to support 
this. For example, Rogers et al. (2012) used ethnographic understanding 
of Mongolian pastoral kinship affinities to demonstrate that weather 
impacts (both snowstorms and drought) nearly double in severity due to 
strained social relationships under conditions of restricted movement. 
Without this detailed understanding of social networks and pressures, 
their model likely would have underestimated the impact of extreme 
weather events on the well-being of pastoral communities. Ethnographic 
and narrative studies of life trajectories can thus help clarify how 
humans construct their identities and social positions over time, 
encouraging SES models to move away from purely structural or static 
rule-based interactions among model agents (Manuel-Navarrete, 2015). 
Qualitative descriptions can also aid in the communication of SES model 
results, as narratives have been shown to foster greater appreciation of 
simulation models by non-modelers when compared to aggregated, 
statistical summaries (Millington et al., 2012). 

We also found that models using higher numbers of biophysical 
datasets were associated with higher system understanding outcomes 
but lower learning/communication outcomes. For example, Briner et al. 
(2013) found that biological interdependencies were the most influen-
tial factor causing trade-offs between ecosystem services in the Swiss 
Alps, acknowledging that economic and technological in-
terdependencies were under-represented in their analysis and would 

benefit from further exploration. They articulated how this improved 
system understanding could theoretically benefit management and 
policy, but fell short of describing any clear learning outcomes experi-
enced by practitioners on the ground. 

Still, our analysis shows that biophysical datasets are a common and 
useful tool for understanding cross-scale processes in SES models. Yet, as 
Callon and Latour (1981) note, scale is not just about moving across 
space and time - it is also about translation and power. Our review of SES 
models then raises the question - whose system understanding is being 
(re)produced by SES models with high biophysical focus? And who is 
benefitting? An example from Alaska (not included in our model review) 
illustrates that while participants in a modeling workshop collaborated 
through engagement with a largely biophysical model, there was a lack 
of formal avenues for incorporating different observations or data types 
deemed valuable by local and Indigenous residents into the model 
(Inman et al., in review). While public participation in the modeling 
process may have encouraged learning about scientific concepts and 
collaboration through the model as a boundary object, this would be a 
unidirectional form of learning as scientists were less likely to incor-
porate other types of data or knowledge into the model. This unidirec-
tional learning is problematic given the historical tendency for scientists 
to attempt to validate other forms of knowledge without respecting their 
unique epistemologies (Agrawal, 1995; Nadasdy, 1999; Latulippe, 2015; 
Chakraborty et al., 2019). Therefore, SES models that bring diverse 
people together while still representing only a narrow fraction of the 
knowledge types involved are not functioning as appropriate 
technology. 

Local ecological knowledge can provide highly detailed under-
standing to overcome barriers in understanding and representing social 
processes in SES models. Local knowledge may be particularly useful in 
data-poor regions around the world, including mountains (Ritzema 
et al., 2010). For example, Lippe et al. (2011) used qualitative expert 
knowledge to parameterize a land use model in Northwest Vietnam, 
enabling a more accurate portrayal of farmers’ cropping choices. 
Moreover, local knowledge itself can act as a scalar device, as knowledge 
that is transmitted across generations can enhance system understand-
ing across temporal scales (Moller et al., 2004; Gagnon and Berteaux, 
2009). Though not a modeling study, Klein et al. (2014) found that Ti-
betan pastoralists who travel further from their home base to higher 
elevations while herding showed more consensus around climate change 
and added valuable spatial data beyond what was available from the 
scant meteorological stations in the region. 

It is not yet clear whether more balanced inclusion of social data and 
local knowledge could resolve the apparent trade-off between system 
understanding and learning/communication, or whether learning is 
more dependent on the modeling process regardless of the datasets and 
knowledge types used. It is also not yet clear how to integrate different 
knowledge types into models without privileging certain ways of 
knowing. We encourage future research into these questions, and urge 
modelers to remain cognizant of biases towards disciplinary datasets 
and of power imbalances in the types of knowledge used and how these 
might impact participant learning. Studies that examine the kinds of 
learning experienced by participants are needed to ensure that learning 
occurs as a mutual and reflexive process among the diverse groups of 
people involved (Keen et al., 2005; Reed et al., 2010; Fernández- 
Giménez et al., 2019). Qualitative social science approaches play a 
powerful role in understanding not just what people want or what they 
value, but who they are (Callon and Latour, 1981), and should therefore 
be granted a more central role in transdisciplinary SES modeling design 
and application. 

4.3. Promote flexibility in model design 

Modelers make a distinction between “complicatedness” and 
“complexity” in SES models (Sun et al., 2016). When model structures 
have large numbers of variables or when processes are represented by 
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highly detailed rules and/or equations, these models are said to have 
high complicatedness (Sun et al., 2016). Meanwhile, model complexity 
refers to the simulated behaviors that emerge at the system level through 
application of the model, which can occur even from quite simple 
models (Conway, 1970; Schelling, 1971). The aim is for all SES models 
to mimic some degree of real-world complexity (Balbi and Giupponi, 
2010). However, modelers still debate how complicated a model needs 
to be in order to facilitate this emergent complexity and support 
decision-making outcomes. 

Typically, modelers seek the benefits of highly stylized models for 
testing theories and yielding generalizable results, while highly detailed 
models are praised for their utility in supporting decision making in 
complex, real-world situations (Smajgl et al., 2011). Parker et al. (2003) 
distinguishes between highly stylized simple “Picasso” models and 
highly detailed empirical “photograph” models, while others describe 
them as the “KISS: Keep it Simple, Stupid” (Axelrod, 1997) versus the 
“KIDS: Keep it Descriptive, Stupid” approaches (Edmonds et al., 2004). 
Some modelers and decision-makers prefer ensemble modeling, inte-
grating multiple diverse models, algorithms, and datasets to produce a 
single set of recommendations (Elder, 2018). In short, there are mod-
elers who believe the more complicated a model is, the better it can be 
used for decision support and stakeholder learning (Barthel et al., 2008). 

Yet, our results do not support these distinctions in disparate benefits 
from different levels of model complicatedness, and challenge the idea 
that a model needs to be highly complicated in order to advance societal 
objectives. Fine-scale SES models in our review were not more likely 
than coarse-scale models to report greater model purpose outcomes. 
Furthermore, we found that models that represent processes occurring 
across multiple scales were not more likely to support higher outcomes 
than those focusing on processes operating at a single scale. We found no 
evidence of improved or diminished decision support when higher 
numbers of modeling approaches were used concurrently in the same 
study (as in ensemble modeling), or when more datasets were used. 

These results further support our assertion that in order to function 
as appropriate technology in transdisciplinary applications, SES models 
ought to be designed as boundary objects to address a specific infor-
mation need presented by a societal problem. We recommend that 
modelers repeatedly reflect on the needs of their system and diverse end 
users when considering the scale and choice of modeling approach, 
rather than assuming finer-scale or highly complicated models will 
necessarily yield superior results. Viewing these results through the lens 
of scalar devices, we encourage SES modelers to remain flexible in the 
ways they represent cross-scalar processes in their models, and to 
consider in advance how their choice of scale might enable or constrain 
collaboration among participants - that is, how scale itself functions as a 
boundary object. 

Researchers are still in the early stages of empirically measuring how 
the design and application of modelling and data visualization tools 
relate to non-technical stakeholders’ capacity to contribute meaning-
fully to collaborative planning processes (Zellner et al., 2012; Radinsky 
et al., 2017). There is some indication that models and tools that 
encourage active, energetic dialogue without overwhelming partici-
pants with information (Pelzer et al., 2015) are best suited for these 
applications. Recent research has shown that participatory modelers 
often use the modeling approaches they are most familiar with, rather 
than objectively selecting “the best tools for the job” (Voinov et al., 
2018). Our results seem to confirm this, as we do not see any evidence of 
a particular modeling type or scale yielding higher model purpose out-
comes. For example, our analysis demonstrates systems dynamics 
models usually have high societal orientation, but not necessarily the 
high learning and decision support outcomes proposed by other reviews 
(Schlüter et al., 2019). Our finding that decision support outcomes are 
higher when cellular automata models are not used aligns with previous 
insights into the limited utility of these approaches for certain contexts 
(NRC, 2014). Yet, nearly half the models in our review were a combi-
nation of agent-based models and cellular automata models, 

highlighting the popularity and flexibility of these particular model 
types for representing complex SES - something anticipated nearly two 
decades ago (Parker et al., 2003; Verburg et al., 2004). Additional 
empirical studies are needed in the context of SES models for trans-
disciplinary applications to clarify whether particular modeling ap-
proaches or scales can best function as boundary objects. 

These findings contribute to ongoing debates about the level of 
complicatedness needed for SES models to support learning and decision 
making. Multiple modeling paradigms have emphasized the benefits 
that emerge from achieving an intermediate level of model complicat-
edness. Grimm et al. (2005) present this as the “Medawar zone,” 
describing that models are most useful when design is guided by mul-
tiple patterns observed at different scales and hierarchical levels. 
Meanwhile, members of the Companion Modeling network have artic-
ulated a “KILT: Keep It a Learning Tool” approach that advocates for 
slightly less complicated models than the Medawar zone in order to 
allow diverse stakeholders to connect with the system on their own 
terms (Le Page and Perrotton 2018). O’Sullivan et al. (2016) have 
similarly argued that mid-range complicatedness is often the optimal or 
appropriate level. Yet, our results do not necessarily support these hy-
potheses in all circumstances. For example, we find that highly context- 
specific models lead to higher learning outcomes, but this does not 
necessarily mean finer-scale data or model resolution are required. 
Meanwhile, decision support seems to be best supported at intermediate 
(not low or high) levels of generalizability. We encourage more explicit 
attention to the assessment of participant learning and decision support 
in future modeling efforts to help resolve these debates and advance our 
understanding of the role of scale in SES models functioning as appro-
priate technology. 

4.4. Bridge institutional gaps for decision support, learning, and 
communication 

For SES models to act as appropriate technology for transdisciplinary 
work, they must support decision-making processes and learning for 
real-world applications. This can be accomplished by ensuring that 
models act as transdisciplinary boundary objects and facilitate cross- 
scalar learning as scalar devices. Our review revealed considerable 
gaps between the intentions and outcomes of SES models for these 
purposes. The gap in decision support stemmed from failing to achieve 
or report outcomes that matched the intended model purpose, while 
learning/communication outcomes were rarely even intended by most 
models in our review. While interviews with modelers themselves may 
help us better understand these gaps, integrating societal goals into 
model design and application could be one approach to improving 
transdisciplinary applications of SES models. Yet, this may be difficult 
for modelers to achieve due to the current knowledge infrastructure 
surrounding the modeling process. One issue is the stigma sometimes 
attributed to “applied” research, or the false dichotomy between 
“applied” and “basic” research that seems to resist simultaneous ad-
vances in theoretical and pragmatic fronts (Stokes, 1997). Indeed, we 
did not find any models in our review that supported high scientific as 
well as high societal orientation – although Brunner et al. (2016) and 
Smajgl and Bohensky (2013) came close to achieving this. Both 
modeling efforts incorporated and explored specific policy interventions 
while advancing theory and methodologies in the field of SES modeling, 
indicating a path forward for joint basic and applied research in SES 
modeling. 

Another infrastructural barrier is that some modelers do not appre-
ciate the value of investing time and money in knowledge co-production 
processes, particularly if their funding mechanisms and career 
advancement do not reward this kind of engagement with stakeholders. 
There is some evidence that this is changing, as large-scale funding 
initiatives such as the Global Challenges Research Fund, the Belmont 
Forum, and Future Earth require close partnerships between researchers 
and decision or policy-makers (Mauser et al., 2013; Suni et al., 2016). 
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Researchers also typically operate on slower time scales than societal 
problems, which may be a source of frustration for communities expe-
riencing severe economic and ecological consequences from global 
environmental change. These barriers require institutional changes to 
facilitate and reward modelers’ engagement with societal challenges, 
and we encourage modelers to begin making incremental changes to-
wards this goal within their own projects and institutions. 

5. Conclusions 

This study improves our understanding of how SES models can be 
more appropriately designed and applied to fit transdisciplinary ap-
proaches, both in mountains and other SES. First, we found that di-
versity among the participants involved in modeling can lead to 
improved collaboration and cooperation for real-world problem solving. 
As global environmental change increases the need to collaborate across 
diverse groups for sustainable outcomes in SES, we encourage modelers 
to take the time to build stronger relationships across academic disci-
plines and social worlds. Second, we found that diverse participation 
does not necessarily translate into diverse knowledge and data being 
incorporated into the model. This suggests that modelers must pay closer 
attention to issues of power when using SES models as boundary objects, 
and specifically how diverse perspectives are translated and incorpo-
rated into the final model product, or excluded from it. Third, we find 
that flexibility in model design is a key element for employing SES 
models as scalar devices in transdisciplinary applications, as the context 
of the modeling effort is of greater consequence than the technical 
complicatedness of the model. As STS scholars continue to develop the 
scalar devices concept into an analytical tool, we encourage more 
explicit engagement with questions of knowledge translation and power. 
Finally, we highlight some institutional barriers that may be inhibiting 
SES modelers from long-term, place-based engagement in societal is-
sues. Creating SES models that are appropriate technology for trans-
disciplinary applications will require advanced planning, increased 
funding and attention to the role of diverse data and knowledge, and 
stronger partnerships across disciplinary divides. Highly contextualized 
participatory modeling that embraces diversity in both data and actors 
appears poised to make strong contributions to the world’s most press-
ing environmental challenges. 
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Étienne, M. (Ed.), 2013. Companion Modelling: A Participatory Approach to Support 
Sustainable Development. Springer Science & Business Media. 

Etienne, M., Du Toit, D., Pollard, S., 2011. ARDI: a co-construction method for 
participatory modeling in natural resources management. Ecol. Soc. 16 (1). 
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National Future Earth platforms as boundary organizations contributing to solutions- 
oriented global change research. Curr. Opin. Environ. Sustainability 23, 63–68. 

Taylor, P.J., 2005. Unruly Complexity: Ecology, Interpretation, Engagement. University 
of Chicago Press. 
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